Anlage- und Gerätebeschreibung

RADIOTELEPHON

Typ RT 5

AKTIENGESELLSCHAFT BROWN, BOVERI \& CIE. BADEN (Schweiz)

RADIOTELEPHON RT5

für Betriebsfrequenzen im Bereiche von

$30 \cdots 500 \mathrm{MHz}$

grosse Sendeleistung

kleine Abmessungen sorgfältige und robuste Konstruktion Betriebssicherheit

Bedienungsseite einer mobilen RT5-Station

Das Radiotelephon RT5 ist ein
ideales Verbindungsmittel
für bewegliche und ortsfeste
Dienste aller Art

Sender:

Ausgangsleistung bei $6 \mathbf{V}$ oder 12 V Batteriespeisung intermittierend bei Wechselstromspeisung intermittierend Dauerbetrieb mit zusätzlicher Ventilation
Frequenzhub f_{H} : maximal begrenzt auf.
NF-Frequenzband: Pre-emphasis 6 db pro octave

NF-Eingang: an 600 Ohm minimal
Geräuschabstand
Klirrfaktor
Dämpfung der Oberwellen gegenüber Nennleistung (ohne zusätzliches Filter)
Dämpfung der Nebenwellen gegenüber Nennleistung (Harmonische der Trägerfrequenz ausgenommen)
Röhrenbestückung

Strom- bzw. Leistungsaufnahme (geltend für die Sender aller 4 Normalserien): Vorgeheizt Senden

Empfänger:

Empfindlichkeit für ein Verhältnis Signal: Rauschen $=20 \mathrm{db}$ (Ue an 50 Ohm) Squelch-Empfindlichkeit regelbar
Klirrfaktor (für 1 Watt)
Selektivität: Dämpfung für
$\pm 15 \mathrm{kHz}$
+30 kHz .
NF-Ausgang an 5 Ohm
De-emphasis 6 db pro octave

Röhrenbestückung

Strom- bzw. Leistungsaufnahme (geltend für die Empfänger aller 4 Normalserien)

RT 504	RT 508	RT 516	RT 546
$\begin{gathered} 30-41 \mathrm{MHz} \\ \pm 1 \cdot 10-5 \\ 250 \mathrm{kHz} \\ 50 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 70-90 \mathrm{MHz} \\ \pm 1 \cdot 10-5 \\ \\ 300 \mathrm{kHz} \\ 50 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 156-174 \mathrm{MHz} \\ & \pm 1 \cdot 10^{-5} \\ & 500 \mathrm{kHz} \\ & 50 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 450-470 \mathrm{MHz} \\ & \pm 1 \cdot 10-5 \\ & 2000 \mathrm{kHz} \\ & 50 \mathrm{kHz} \end{aligned}$
45 W 45 W 35 W $\pm 15 \mathrm{kHz}$ $300-3000 \mathrm{~Hz}$ -3 db 100 mV 50 db 5% 60 db 80 db 4×6 AM5 1×6 AL5 1×6 BA6 1×5763 $1 \times$ QQE03/12 $1 \times$ QQE06/40	$\begin{aligned} & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \\ & 35 \mathrm{~W} \\ & \pm 15 \mathrm{kHz} \\ & 300-3000 \mathrm{~Hz} \\ & -3 \mathrm{db} \\ & 100 \mathrm{mV} \\ & 50 \mathrm{db} \\ & 5 \% \\ & \\ & 60 \mathrm{db} \\ & \\ & 80 \mathrm{db} \\ & 4 \times 6 \text { MM5 } \\ & 1 \times 6 \text { AL5 } \\ & 1 \times 6 \text { BA6 } \\ & 1 \times 5763 \\ & 1 \times \text { QQE03/12 } \\ & 1 \times \text { QQE06/40 } \end{aligned}$	$\begin{aligned} & 30 \mathrm{~W} \\ & 30 \mathrm{~W} \\ & 25 \mathrm{~W} \\ & \pm 15 \mathrm{kHz} \\ & 300-3000 \mathrm{~Hz} \\ & -3 \mathrm{db} \\ & 100 \mathrm{mV} \\ & 50 \mathrm{db} \\ & 5 \% \\ & \\ & 60 \mathrm{db} \\ & \\ & 80 \mathrm{db} \\ & 4 \times 6 \text { AM5 } \\ & 1 \times 6 \text { AL5 } \\ & 1 \times 6 \text { BA6 } \\ & 1 \times 5763 \\ & 2 \times \text { QQE03/20 } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~W} \\ & 20 \mathrm{~W} \\ & 16 \mathrm{~W} \\ & \pm 15 \mathrm{kHz} \\ & 300-3000 \mathrm{~Hz} \\ & -3 \mathrm{db} \\ & 100 \mathrm{mV} \\ & 50 \mathrm{db} \\ & 5 \% \\ & \\ & 60 \mathrm{db} \\ & \\ & 80 \mathrm{db} \\ & 1 \times 6 \mathrm{AM} 5 \\ & 2 \times 6 \mathrm{AM} 6 \\ & 1 \times 6 A L 5 \\ & 1 \times 6 \mathrm{BA} 6 \\ & 1 \times 5763 \\ & 1 \times \text { QQE03/12 } \\ & 2 \times \text { QQE03/20 } \end{aligned}$
Batterie $\begin{array}{r} 6 \mathrm{~V}= \\ 5,0 \mathrm{~A} \\ 36,0 \mathrm{~A} \end{array}$	$\begin{gathered} \text { speisung } \\ 12 \mathrm{~V}= \\ 2,5 \mathrm{~A} \\ 18,0 \mathrm{~A} \end{gathered}$	Wechselstromspeisung	
$\begin{gathered} 0,3 \mu \vee \\ 0,2-1 \mu \vee \\ 8 \% \\ 6 \mathrm{db} \\ 100 \mathrm{db} \\ 1 \mathrm{~W} \\ 300-3000 \mathrm{~Hz} \\ -3 \mathrm{db} \\ 2 \times 6 \mathrm{AK} 5 \\ 1 \times 6 \mathrm{AL5} \\ 1 \times 6 \mathrm{AQ} 5 \\ 6 \times 6 \mathrm{AU} 6 \\ 1 \times 6 \mathrm{BE} 6 \\ 2 \times 12 \mathrm{AT} 7 \end{gathered}$	$\begin{gathered} 0,4 \mu \mathrm{~V} \\ 0,2-1 \mu \mathrm{~V} \\ 8 \% \\ 6 \mathrm{db} \\ 100 \mathrm{db} \\ 1 \mathrm{~W} \\ 300-3000 \mathrm{~Hz} \\ -3 \mathrm{db} \\ 3 \times 6 \mathrm{AK} 5 \\ 1 \times 6 \mathrm{AL5} \\ 1 \times 6 \mathrm{AQ} 5 \\ 6 \times 6 \mathrm{AU} 6 \\ 1 \times 6 \mathrm{BE} 6 \\ 2 \times 12 \mathrm{AT} 7 \end{gathered}$	$\begin{gathered} 0,6 \mu \mathrm{~V} \\ 0,3-1,5 \mu \mathrm{~V} \\ 8 \% \\ 6 \mathrm{db} \\ 100 \mathrm{db} \\ 1 \mathrm{~W} \\ 300-3000 \mathrm{~Hz} \\ -3 \mathrm{db} \\ 3 \times 6 \mathrm{AK5} \\ 1 \times 6 \mathrm{AL5} \\ 1 \times 6 \mathrm{AQ} 5 \\ 6 \times 6 \mathrm{AU} 6 \\ 1 \times 6 \mathrm{BE} 6 \\ 2 \times 12 \mathrm{AT} 7 \end{gathered}$	$\begin{aligned} & 1 \mu \mathrm{~V} \\ & 0,5-2 \mu \mathrm{~V} \\ & 8 \% \\ & 6 \mathrm{db} \\ & 100 \mathrm{db} \\ & 1 \mathrm{~W} \\ & 300-3000 \mathrm{~Hz} \\ & -3 \mathrm{db} \\ & 4 \times 6 \mathrm{AK} 5 \\ & 1 \times 6 \mathrm{AL5} \\ & 1 \times 6 \mathrm{AQ} 5 \\ & 6 \times 6 \mathrm{AU} 6 \\ & 1 \times 6 \mathrm{BE} 6 \\ & 2 \times 12 \mathrm{AT} 7 \\ & 1 \times \mathrm{EC} 80 \end{aligned}$
Batteriespeisung		Wechselstromspeisung	
6,4 A	3,2 A	ca. 40 W	

Anlage- und Gerätebeschreibung

Radiotelephon

Typ RT 5

Bestellung Nr. 62684

AKTIENGESELLSCHAFT
 BROWN, BOVERI \& CIE. BADEN (SCHWEIz)

	RADIO COMMUNICATION		Best. 62684 $G-/ 352$
Uebersicht	G 1	Beschreibung der Gesamtanlage und spez. Hinweise	
$\frac{\text { Ruf- und Kon- }}{\text { trollsystem }}$	G 4.22 sl	Drahtloser Telephonanschluss System Oe.PTT	
$\begin{aligned} & \text { Stations- } \\ & \text { Ausrustung } \end{aligned}$	G 5 N 62	Amtsseite C-N 62	
$\begin{aligned} & \text { Geräte der } \\ & \text { HF-Ausristung } \end{aligned}$	F 5.05	Sender RT 5 Typ S 16 B 13	
	F 5.55	Empfänger RT 5 Typ E 16 B 13	
Zusatzgeräte	B 1	Allgemeines	
	$\begin{array}{lll} \text { B } & 111 \\ \text { B } & 118 \end{array}$	Service-Instrument MD 51 LC-Frequenzweiche F 16 B 31	
	B 173 sl	Telephonzusatz GU 31-1 sl	
$\frac{\text { Montage und In- }}{\text { betriebsetzung }}$	E 1	Allgemeines	
	E 5	Inbetriebsetzung Fixstation	
$\begin{aligned} & \text { Unterhalt und } \\ & \text { Fehlersuche } \end{aligned}$	S 1	Einleitung	
	S 2.5.05	Sender Typ S 16 B 1	
	S 2.5.55	Empfänger E 16 B I	
		.	

RADIO COMMUNICATION

Kunde :	
Anlage	
Material : Drahtloser Sprechfunkteilnehmer	
Ausruistung der Teilnehmerseite	

1. Einleitung

Die Geräte dieser Bestellung umfassen die amtsseitige Funkausrüstung für die drahtlose Anschaltung von Teilnehmeranschluissen an Aemter mit automatischer Selbstwahl.

Für die Funkuibertragung werden RT 5 Duplex-Geräte verwendet. Die Anpassung an die 2-Draht Leitung und die Signalübertragung erfolgt mit den Zusätzen DU 4l-1 sl bzw. DU 3l-1 sl.
2. Speisespannung

Die Anlage ist für 220 V-Netzspeisung vorgesehen.
3. Frequenzplan und Gerätedisponierung

Der Verkehr wickelt sich im Duplex ab.
4. Spez. Anpassungen

Für die vorgeschriebenen Uebertragungsbedingungen sind an den Grundgeräten, entgegen den Angaben im Schema und Detailbeschreibung folgende Anpassungen durchgefuhrt:

4.1 Sender

Massnahmen für Linearisierung des Frequenzganges nach Ergänzungsschema HK 412091.

4.2 Empfänger

Massnahmen für Linearisierung des Frequenzganges und Anpassung der NF-Ausgangsimpedanz an 100 Ohm nach Ergänzungsschema HK 412091.

```
Ruf- und Kontrollsysteme
Drahtloser Telephonanschluss an automatische Zentrale
```

Beschreibung drahtloser Telephonanschluss an automatische Zentrale (Oe.P.T.)

Inhaltsverzeichnis

Seite

1. Allgemeines 2
2. Anwendbarkeit 2
3. Schaltung und Wirkungsweise 2
3.1 Geräteumfang 2
3.2 Funktionsprinzip 3
3.3 NF-Stromkreise 4
a. Zentralenseite 4
b. Teilnehmerseite 4
3.4 Stromlaufbeschreibung der Automatik 5
3.4.1 Verbindungsaufbau
Teilnehmer - Zentrale 5
a. Durchschalten 5
b. Wählen 7
c. Taxierung 8
d. Trennen 8
e. Taxierung bei angebrochener weiterer Zeiteinheit 9
3.4.2 Verbindungsaufbau Zentrale - Teilnehmer 10
a. Rufen 10
b. Durchschalten 10
4. Pegeleinstellung 11
4.1 Werkeinstellung 11
4.2 Normale Betriebseinstellung 11
5. Unterhalt 13
5.1 Periodischer Unterhalt 13
5.2 Störungen 14

Ruf- und Kontrollsysteme

Blockschema/Prinzipschema Funktionsdiagramm

HK 090515
HK 304488

1. Allgemeines

Die Zusatzausrüstungen DU 31 und DU 41 ermöglichen den Betrieb einer normalen Amtsstation mit Selbstwahl über eine Funkstrecke. Die Funkstrecke kann irgendwo in den Leitungszug.der 2-Draht Teilnehmerschlaufe eingefiugt werden, ohne dass irgendwelche Anpassungen der Zentrale oder des Amtsapparates notwendig sind. Die Bedienung bleibt ebenfalls unverändert.

Die Schaltung ist so ausgelegt, dass die Sender nur eingeschaltet werden, wenn die Verbindung belegt ist.
2. Anwendbarkeit

Das System ist für alle ublichen automatischen Zentralenausrüstungen verwendbar. Normalerweise ist nur eine Teilnehmerstation pro HF-Kanal angeschaltet. Die gleiche Ausrüstung kann auch bei $2 B-Z e n t r a l e n$ mit Handvermittlung verwendet werden.

Nebenstellen, die mit Amtsleitungen an das offentliche Telephonnetz anzuschliessen sind, können mit einer gleichen Ausrüstung uber eine Funkstrecke angeschaltet werden.
Die Einrichtung ist auch für die Uebertragung von Taximpulsen zu Betätigung eines lokalen Gesprächszählers geeignet. Die Zentralenseite ist ausserdem mit einem stromrichtungsabhängigen Relais für Betrieb mit Klein-Teilämtern ergänzt..
3. Schaltung und Wirkungsweise

3.1 Geräteumfang

DU 31 : Zusatzausrüstung Zentralenseite mit Telephonzusatz

DU 41 : Zusatzausrüstung Teilnehmerseite mit Telephonzusatz

DU 31

DU 41

3.2 Funktionsprinzip

Die Funktionen der Automatik besieren auf folgenden Prinzipien :

- Für die Signalubertragung besteht ein TonfrequenzSignalkanal (3700 Hz).
- Die Automatik wird grundsätzlich von der Teilnehmerseite gesteuert; nur während der Rufibertragung wird der Sender der Zentralenseite vom Ruf gesteuert.
- Belegen der Teilnehmerseite (Abheben von Mikrotel) bewirkt Einschalten des Senders und Tasten des Signalkanals. Damit wird der Sender der Zentralenseite ebenfalls eingeschaltet. Der auf der Teilnehmerseite eintreffende HFTräger trennt die Modulation des Signalkanales ab und schaltet die Sprechstromkreise durch. Auf der Zentralenseite erfolgt ebenfalls Belegung und Durchschaltung. Der Summton der Zentrale ist auf der Teilnehmerseite hörbar und gibt damit das Zeichen für die Wahl.

HK 80065
D/3

BROWN BOVERI
RT
G 4.22.s1
4(13)

- Wahlimpulse werden über den Signalkanal übertragen.
- Auflegen nach Gesprächsschluss schaltet den Sender der Teilnehmerseite aus. Der fehlende HF-Träger auf der Zentralenseite schaltet dessen Sender ebenfalls aus und gibt die Zentrale wieder frei.

3.3 NF-Stromkreise (Blockschema HK 090515)

a. Zentralenseite:

Die Zweidrahtleitung der Zentrale ist mit Trenntrafo $T 3$ abgeschlossen. Auf der Tf-Seite liegen ausserdem Anrufrelais R mit Gleichrichterschaltung G 1 und Trennkondensator C 5. Die Drossel D 1 belegt die Zentrale. Die Funkseite des Trenntrafos enthält Dämpfungsglieder und die beiden Gabeltransformatoren T 1 und T 2. Die 4-Draht-Seiten sind auf den Sender bzw. Empfanger geschaltet.

Der Tongenerator (V I) ist im Sendezweig eingekoppelt. Der Tiefpass mit den Kreisen A 3, A 4 und A 5 verhindert Beeinflussung der Signalübertragung durch Sprechfrequenzen und verhindert auch Rückfluss der Wahlsignale der Gegenrichtung.

Der Auswerter (V 2) ist am Empfängerausgang angekoppelt. Der Begrenzertrafo T 4 beschneidet die Tonfrequenzimpulse der Wahlübertragung, so dass möglichst kleine Wahlverzerrungen entstehen.
b. Teilnehmerseite

Die Zweidrahtleitung des Teilnehmers erhält Leitungsspeisung über Symmetrietrafo T 4 und Speiserelais A. Der Trenntrafo T 3 überträgt die Sprechströme auf die Gabelschaltung mit den beiden Uebertragern $T 1$ und T 2. Die beiden Dioden $G 5$ und $G 6$ begrenzen die Impulsspitzen, die:während der Wahl auftreten und den Sendemodulator uibersteuern könnten. Ueber Relaiskontakte wird der Tongenerator in die 4-Draht-Sendeseite eingekoppelt. Der Tiefpass mit den Kreisen A 3, A 4 und A 5 verhindert Beeinflussung der Wahlubertragung durch Sprach

Ruf- und Kontrollsysteme
Drahtloser Telephonanschlus an automatische Zentrale
BROWN BOVERI
RT
G 4.22 sl
signale. Der Auswerter (U 3) liegt parallel zum Empfängerausgang. Der Trafo T 6 wirkt als Begrenzertrafo wie auf der Zentralenseite beschrieben. Der Tiefpass GZ 14 unterdrückt Taximpuls-Signale zum Teilnehmer.

3.4 Stromlaufbeschreibung der Automatik

3.4.1 Verbindungsaufbau Teilnehmer-Zentrale
a) Durchschalten

Teilnehmerseite: (C - N 63 GU 41-1)
Abheben des Mikrotels durch den Teilnehmer, Schlaufenschluss auf der Teilnehmerleitung, Relais A zieht auf. Kontakt a^{V} im Signalumsetzer GU 41 gibt Masse uber t^{I} auf Relais B. Relais B zieht auf und hält sich uber $b^{I 2}$ Der Sender auf der Teilnehmerseite wird uber $b^{V 2}$ in $\mathrm{Be}-$ trieb gesetzt. (Masse auf TR N 1/2-2).
Relais V zieht uber $t^{\text {III }}$ und $b^{\text {II }}$ auf. Kontakt $v^{I I} l_{\text {iber- }}$ brückt den Kathodenwiderstand R 28 vom Tongenerator V 1. Der Tongenerator Teilnehmerseite wird dadurch in Betrieb gesetzt und moduliert den Sender mit einem Ton von $3,7 \mathrm{kHz}$ uber q^{V} und $v^{I I I}$ Kontakte (Belegungston). Das Filter A $3+A 5$ bleibt dabei abgeschaltet. Relais Q zieht uber $q h^{I I}-v^{I 2}-a^{I}-b^{I 1}$.

Zentralenseite: (C - N 62 GU 31-1 sl
Durch den eintreffenden Träger von der Gegenstation wird im Empfänger das Squelchrelais betätigt. Masse auf Leitung QA (N 1/2-11). Der eintreffende $3,7 \mathrm{kHz}$ Ton wird im Tonauswerter V 2 ausgewertet. Relais TF zieht auf, QH zieht uber b^{I} - tf $f^{I I I}$ auf. Anschliessend zieht Relais BH über Kontakt gh ${ }^{I V}$ und Leitung QA auf und hält sich selber uber bh^{I}. Kontakt bh ${ }^{\text {III }} 2$ gibt Masse auf Relais T. Der

Ruf- und Kontrollsysteme Drahtloser Telephonanschluss an automatische Zentrale G 4.22 sl

Zentralensender wird aber Leitung TR, N $1 / 2-2$, Kontakt $t^{\text {IV2 }}$ in Betrieb gesetzt.

Teilnehmerseite :
Der Empfänger gibt mit Squelchrelais Masse auf QA (N $1 / 2-11$). Relais T zieht uber $Q A, a^{I I I}, g^{V}$ auf und halt sich anschliessend Uber t^{V} QA. Kontakt $t^{I I I}$ öffnet die Ruheseite, Relais V fällt mit einer ca. 70 ms dauernden Verzobgerung ab. Duroh Oeffnen von $v^{I} 2$ fällt Relais Q ebenfalls ab. Die Kontakte q^{V} und $v^{I I I}$, welche den Tongenerator V 1 direkt auf die Modulationsseite Mb des Senders geschaltet hatten, fallen somit ab und das Tiefpassfilter ist wieder zwischen Gabel T 1 und Sendereingang $\mathrm{Ma} / \mathrm{Mb}$ geschaltet. Ferner wird uber $\mathrm{v}^{I I I}$ der Tongenerator ausser Betrieb gesetzt. Die Einleitung der $\mathrm{Be}-$ legung wird somit durch eine Trägerrückmeldung abgestellt.

Zentralenseite:

Durch den Wegfall des Belegungstones fällt das TF-Relais des zentralenseitigen Auswerters ab. tf ${ }^{I I I}$ offnet und Relais QH fällt ab。Dadurch zieht Relais B (Belegung) uber QA, qh ${ }^{\text {IV }}$ und b^{V} auf und hält sich anschliessend uber $b^{I I I}$ selbst. Relais B schliesst iber Kontakt b^{V} die Telefonschlaufe Zentrale La, $b^{V}, q^{I I I}, D 1$, Lb. Der Schlaufenschluss des Teilnehmers wird an die Zentrale weitergegeben.

Durch den Schlaufenschluss kommt von der Zentrale Summton, der uber La, $b^{V}, q^{I I I}, V^{V}, T 3, v^{I I I}$, Lb den Zentralensender uber die Gabelschaltung und das Tiefpassfilter moduliert.

Teilnehmerseite:
Squelchrelais gibt Masse auf QA. (Seit der Beleging liegt der Träger auf dem Empfänger). Relais T ist ebenfolls angezogen. (Siehe weiter vorn). Ueber Ra-Rb und den Spannungsteiler R 47 gelangt der Summton uber die Gabelschaltung auf den Trennibertrager $T 3$ und weiter auf die Teilnehmerschlaufe. Der Teilnehmer erhält den Freiton, d.h. das Zeichen zum Wahlbeginn. Relais T mit Kontakt $t I$ bereitet die Taxierung vor

Ruf- und Kontrollsysteme
Drahtloser Telephonanschluss an automatische Zentrale

b) Wählen

Teilnehmerseite :
Der Teilnehmer kann mit der Wahl beginnen. Er zieht die Nummernscheibe auf. Dadurch wird die Schlaufe kurzgeschlossen und beim Ablauf die notwendige Anzahl Unterbrechungen erzeugt. Bei der ersten Unterbrechung fällt Relais A während 60 ms ab , dadurch zieht Relais V wieder auf und häl sich wëhrend allen Unterbrechungen eines Ablaufes der Nummernscheibe, da es mindestens um die Oeffnungszeit abfallverzögert ist. Kontakt V^{V} uberbrückt R 28 ; der Tongenerator V 1 wird dadurch in Betrieb gesetzt und der Tongeneratorausgang uber $\mathrm{v}^{I I I} \mathrm{q}^{\mathrm{V}} \mathrm{Mb}$ auf den Sender geschaltèt. Kontakt a^{I} gibt nun im Takte der Schlaufenschliessungen Masse uber $b^{I 1}, a^{I}, V^{I 2}, \mathrm{qh}^{I I}$ auf Relais Q, dieses zieht auf. Kontakt $q^{I I I 2}$ gibt uber $b^{I 1}$ und $t^{I I I}$ Masse auf QH. QH-Relais zieht auf und Kontakt qh ${ }^{I I}$ unterbricht die Speisung des Impulsrelais Q, dieses fällt abfallverzögert ab. Diese Abfallve zögerung kann mit Widerstand R2 eingestellt werden ($40-60 \mathrm{~ms}$ und wirkt als Impulskorrektur. Kontakt q^{V} wandelt somit die Gleichstromimpulse auf der Leitung in Nechselstromimpuilse $3,7 \mathrm{kHz}$ um, indem der Ausgang des schwingenden Tongenerators im Takte der Schlaufenschliessungen auf den Sendereingang durchgeschaltet wird.

Während einer zusammenhängenden Impulsserie bleibt das Tiefpassfilter A 3, A 4, A 5 vom NF-Weg komplett abgetrennt, da sonst Impulsverzerrungen auftreten würden.

Zentralenseite :
Der Zentralenempfänger übernimmt den modulierten Träger und im Tonauswerter gibt Relais TF die Impulse an Relaisschaltung weiter.
Reláis Q zieht bei jedem Impuls uber $\mathrm{tf}^{I I I} \mathrm{~b}^{I} \mathrm{qh}^{I I}$ auf, Kontakt $q{ }^{V}$ lässt QH-Relais ziehen und Kontakt qh ${ }^{I I}$ unterbricht Relaisspeisung Q; dieses fält abfallverzögert $a b$.

Ruf- und Kontrollsysteme
Drahtloser Telephonanschlus an automatische Zentrale

BROWN BOVERI
RT
G 4.22 sl

Diese Abfallverzögerung lässt sich mit Widerstand R 2 einstellen und und wirkt als Impulskorrektor. Beim ersten Impuls zieht Relais V uber q^{I} auf. Relais V ist mindestens um die Abfallzeit von Q abfallverzögert und fällt erst nach einer zusammenhängenden Impulsserie $a b$. Durch den Anzug von V-Relais wird die Zentralenschlaufe uber v^{V} kurzgeschlossen und durch Kontakt $q^{I I I}$ im Takte der Wahlimpulse unterbrochen. Die von der Nummernscheibe erzeugten Schlaufenunterbrechungen werden auf diese Weise an die Zentrale weitergegeben.

Nach erfolgter Wahl fällt V-Relais wieder ab und die Leitung wird uber die Gabel auf Sender und Empfänger durchgeschaltet. Der angerufene Teilnehmer der Zentrale antwortet.
c) Taxierung

Zentralenseite :

Taximpuls aus Richtung Zentrale. Relais G zieht mit den Taximpulsen auf. Der Tongenerator wird durch Kurzschliessen von $R 28$ mit g^{I} in Betrieb gesetzt und gibt die Taximpulse in Form von Tonfrequenzimpulsen weiter.

Teilnehmerseite:

Empfang der Impulse durch den Teilnehmerempfänger. Auswertung im Tonauswerter. Relais G zieht im Takte der Taximpulse auf. Die Teilnehmerschlaufe wird nun erdsymmetrisch mit Wechselspannung im Takte der Taximpulse uber $g^{I I I} t^{I}$ von Trafo T 5 uber die Wicklung $1-4$ von Trafo T 4 gespeist. Weiterschaltung des Gesprächszählers beim Teilnehmer.
d) Trennen

Teilnehmerseite:
Ist das Gespräch beendet, so hängt der Teilnehmer sein Mikrotel auf, Relais A fällt ab. Relais B fällt ab, Teilnehmersender wird uber $b^{V 2}$ abgeschaltet.

Ruf- und Kontrollsysteme
 Drahtloser Telephonanschluss an automatische Zentral

BROWN BOVERI
RT
G 4.22 sl

Zentralenseite :

Squelchrelais des Empföngers fällt $a b$, dadurch wird QA erdfrei. Relais B und $B H$ fallen $a b$. Relais T fallt $a b$. Der Zentralensender wird abgeschaltet und die Schlaufe von der Gabel abgetrennt. Gleichstromfluss durch die Schlaufe wird unterbrochen, und die Zentrale wird frei.

Teilnehmerseite :

Der Squelch des Empfängers fällt ab. QA wird erdfrei. Relais T fällt $a b$. Alles in Ruhelage.
e) Taxierung bei angebrochener weiterer Zeiteinheit : Wird eine Verbindung in dem Augenblick aufgelöst, wo eine weitere Zeiteinheit angebrochen ist, muss die Verbindung trotz Auflösung durch den Teilnehmer bis zur Durchgabe der Taximpulse aufrechterhalten werden.

Zentralenseite :

Durch die Taximpulse zieht Relais G auf. Relais T zieht uber $g^{I I I}$ auf und hält sich mit grosser Verzögerung uber $t^{\text {II }} C$ 1. Kontakt $t^{\text {IV2 }}$ hält den Sender bis 0,5 Sek, nach

- dem letzten Taximpuls und Kontakt gI setzt den Tongenerator im Takte der Taximpulse in Betrieb.

Teilnehmerseite :

Der Empfänger gibt die Tonfrequenzimpulse an den Auswerter mit Röhre V 2. Relais G zieht mit den Taximpulsen auf und leitet die Taxierung uber $\mathrm{g}^{I I I}$ in bekannter Weise ein. 0,5 Sek. nach dem letzten Taximpuls fallen alle Stromkreise in Ruhelage.

Ruf- und Kontrollsysteme
Drahtloser Telephonanschluss an automatische Zentrale

BROWN BOVERI
RT
G 4.22 sI

3.4.2 Verbindungsaufbau Zentrale-Teilnehmer

a) Rufen

Zentralenseite :

Durch den Rufstrom zieht Relais R auf. Sender und Tongenerator Zentralenseite werden im Takte der Rufstromimpulse uber $r^{I I}$ und $r^{I V}$ getastet.

Teilnehmerseite :
Empfänger nimmt den Träger auf und wertet im Tonauswerter die $3,7 \mathrm{kHz}$ Rufimpulse aus. Relais G zieht mit den Impulsen auf. Relais E zieht uber $Q A, a^{I I I}, t^{V}, g^{V}$ und leitet den Ruf auf der Teilnehmerseite ein. Rufstromkreis : Trafo T 5 (6) R 1 e III la, Wicklung T 4, La, Teilnehmerglocke, Lb, Wicklung T 4, e^{V} Masse, C 1, Trafo T 5 (7).
Der Teilnehmer wird gerufen.
b) Durchschalten

Teilnehmerseite :
Der Teilnehmer nimmt ab. Relais A zieht auf. Sollte in diesem Falle ein Ruf angeschaltet werden, dann wird er durch Oeffnen von a ${ }^{\text {III }}$ bzw. Abfall von Relais E abgestellt. Kontakt a^{V} bringt Relais B . Damit wird von Seiten Teilnehmer die Belegung der Anlage eingeleitet, genau wie unter dem Kapitel Verbindungsaufbau TeilnehmerZentrale.

Zentralenseite :

Aufziehen der Relais QH , BH und T , Abfall QH , Anzug B, Haltung von B. Dadurch entsteht Schlaufenschluss, Ruf der Zentrale wird abgeschaltet. Antwort des Teilnehmers. Das Gespräch kann beginnen.

Ruf- und Kontrollsysteme
BROWN BOVERI
Drahtloser Telephonanschluss an automatische Zentrale
RT
G 4.22 sI

4. Pegeleinstellung

Alle Pegeleinstellungen für Sprache beziehen sich auf einen Frequenzhub von 6 kHz , mit einem Messton von 1 kHz . Für die Signalfrequenz von $3,7 \mathrm{kHz}$ gilt ein Frequenzhub von 10 kHz . Fuir Pegeleinstelluncen und Frequenzmessungen sind die beiden Dioden G 5 und G 6 im GU 41-1 uu trennen.

4.1 Werkeinstellung

Wenn bei der Bestellung keine speziellen Angaben vorliegen, werden die Pegel im Werk fiir folgende Bedingungen eingestellt :

Sprachpegel

2-Draht-Senden $\quad 775 \mathrm{mV}$ (0 dbm)
2-Draht-Empfangen 500 mV (ca. -4 dbm)
Die sich daraus ergebenden Spannungswerte sind im Blockschema HK 090515 eingetragen.

Nachbildung

Die Widerstände R 13 der Nachbildung werden fir min. Rückfluss eingestellt. Dabei wird die Leitung La Lb mit 600 Ohm abgeschlossen.

4.2 Normale Betriebseinstellung

Nach Installation der Geräte ist die Ueberprifiung des Abgleiches notwendig :

Nachbildung :

Seite Teilnehmer_: Die Nachbildung ist an Widerstand R 13 fiir max. Ruckflussdampfung einzustellen. Dazu ist im Amtsapparat das Mikrotel abzuheben und in normale Sprachstellung zu halten.

Seite Zentrale_: Die Nachbildung ist an Widerstand R 13 fur max. Rückflussdampfung einzustellen. Dazu ist über die Zentrale eine Verbindung zu einem Teilnehmer aufzubauen.

Signalpegel :

Sendeseite : Signalpegel an Abgriff von Widerstand R 23 einstellen bis Regelverstärker anspricht (leichter Ruickgang an $M 8$ im Sender). Dann Signalspannung ca. 2 db absenken durch Verschieben des Abgriffes, (oder Kontrolle mit Hubmeter. Einstellung für $10 \mathrm{kHz} H u b$.)

5. Unterhalt

5.1 Periodischer Unterhalt :

Ausser den Unterhaltsarbeiten an den HF-Geräten sind folgende Arbeiten notwendig:

Alle 3 Monate :

- Kontrolle der Pegeleinstellung zusammen mit den Funkgeräten wie unter Kap. 4 beschrieben und Nachregelung wenn notwendig.
- Funktionskontrolle der Uebertragung bei künstlich reduziertem Empfangspegel (ca. 4 db). Zu diesem Zweck ist parallel zum Empfängerausgang ($\mathrm{Ra} / \mathrm{Rb}$) eine Zusatzbelastung von ca. 70 Ohm anzuschalten.

Alle Jahre :

Entstauben der Relais, Reinigen der Kontakte und Kontrolle auf Nachlauf.

Ruf-. und Kontrollsysteme
Drahtloser Telephonanschluss an automatische Zentrale

5.2 Störungen :

- Sprachpegel lässt sich nicht mehr einstellen :
\rightarrow Ueberprifien der HF-Geräte nach Messwerttabelle und Störungseingrenzung
\rightarrow Eingrenzen des Fehlers nach Pegelangaben in Blockschema und Schema der HF-Geräte. Kontrolle der Dioden
- Signalpegel lässt sich nicht mehr einstellen : Ersatz der Röhre V 1
- Automatik arbeitet nicht mehr korrekt. Voraussetzung, Signalpegel normel :
\rightarrow Röhre V 2 auf der Empfangsseite ersetzen
\rightarrow Arbeitspunkte der Auswerteröhre und der Begrenzerschaltung nach Angaben in Geratebeschreibung priffen (Kap. B).
\rightarrow Begrenzerdioden defekt
\rightarrow Signalfrequenzen und Resonanzfrequenz des Auswerters kontrollieren
Kelaiszeiten nach Angaben der Gerätebeschreibung prifen.
- Anlage zeigt Pfeiffneigung

Ueberprufen der Pegeleinstellung
Ueberprifen der Nachbildung
RT 5 Sende- and Empfangsstation ortsfest C - N 62
als drahtloser Teilnehmeranschluss mit Inverter
Zentralenseita

INHALTSVERZEICHNIS

1. Unterlagen
2. Mechanischer Aufbau 2
2.1 HF Station

2 und 3
3. Anschlüsse und Verkabelung 4
3.1 Wandrahmen MK 33

4
3.2 LD-Kasten mit Zusatz DU 31 4
3.3 Steuerkablage 4
3.4 HF-Kablage 5
4. Punktion und Etromlaufbeschreibing 5
4.1 Speisung 5
4.2 NF-Stromkreise und Steuerleitungen . 6
5. Anpassunce der Geräte 6
5.1 Emp fänger
5.2 Tejephonzusatz GU 31

BROWN BOVERI RT
Stationstypen RT 5
Sende- und Empfangsstation ortsfest C - N 62
G 5. N 62

```
RT }5\mathrm{ Sende- und Empfangsstation ortsfest C-N 62
```

als drahtloser Teilnehmeranschluss
(Zentralenseite)

1. Unterlagen

Kabelplan C - N 62 HK 090272
Blockschema drahtloser Teilnehmeranschluss mit Zusatz GU 31/41

HK 090507
Var. GU 3l-1/s 1/GU 4l-1- s HK 090515
Funktionsdiagramm drahtloser Teilnehmeranschluss mit Zusatz GU 31/41

HK 304466
Funktionsdiagramm drahtloser Teilnehmeranschluss mit GU 31-1/41-1
Funktionsschema Stromversorgung BN 11
HK 304488

HF-Kablage C-A 33 Duplex
Verkabelung Wandrahmen NK 33-1
Massbild Topf-Frequenzweiche F-B
Massbild LC-Frequenzweiche F-B
Massbild ID-Kasten
Schema Telephonzusatz GU 31
HK 411850
HK 411893

Schema Telephonzusatz GU 31-1
HK 202579

Schema Tiefpass GZ 14
Schema Inverter GJ 52
HK 413205
HK 305103
HK 204211
HK 202482
HK 202483

Photos : HF-Geriste auf Wandrahmen und Zusatz DU 31 in LD-Kasten 109973, 109974
2. Mechanischer Aufbau
2.1 MF-Station

Die Einheiten Empfänger und Netzgleichrichter der HF-Station sind als austauschbare Untereinheiten im schwenkbaren Wandrahmen MK 33-1 eingenängt und mit Schnappverschlüssen fixiert. Die Anschaltung der Steuer- und Speiseleitungen an de im Wandrahmen fest eingezogene Verdrahtung erfolgt mit unverwechselbaren Steckern.

Stationstypen RT 5

Sende- und Empfangsstation ortsfest C-N 62

LC-Frequenzweiche Topf-Frequenzweiche Inverter GJ 52(o.ID-Kasten)
$1,1 \mathrm{~kg}$
$2,7 \mathrm{~kg}$
$1,9 \mathrm{~kg}$

Masse siehe Masszeichnung Wandrahmen MK 33 und Frequenzweiche.

Zusatzapparatur DU 31

Sie enthält den Telephonzusatz GU 31 (GU 31-1) und in speziellen Fällen den Tiefpass GZ 14. Ohne Tiefpass genügt Kasten LD 13. Mit Tiefpass wird Grösse LD 15 benötigt.
Bei Ausbau mit Inverter kann dieser mit dem Zusatz DU 31 im gleichen Kasten zusammengebaut werden. In diesem Fall wird Grösse LD 15 bezw. ID 17 benötigt. MK 33

Bei Nachlieferung von Inverter wi rd dieser in einen zusätzlichen Kasten LD 12 eingebaut.

3. Anschluisse und Verkabelung

3.1 Wandrahmen MK 3

Das Anschlussfeld enthält folgende Gruppen :

- Netzanschlussdose D 13 für das Einfiuhren des Netzanschlusses, bestehend aus Klemmen für :

$$
\begin{array}{ll}
\text { - Phase } & (\mathrm{P}) \\
\text { - Nulleiter } & (\mathrm{N}) \\
\text { - Erde } & (M)
\end{array}
$$

- Erdschraube zum Anschluss einer Schutz- bezw.Blitzerde.
- Strips N 10 fur das Anschliessen der Speise- urid Steuerleitungen der Zusatz- und Bedienungsgeräte.
- Buchsenplatte N 8 zur Pegelkontrolle auf den Emp-fangs- und Modulationsleitungen. oder in älteren Ausführungen :
- Verteiler FD Il für das Anschliessen und Schęlen der Speise - und Steuerleitungen der HF- und Zusatzgeräte untereinander bestehend aus :
- 4×14 Lötstiften $A-D$ und $1-5$

3.2 LD-Kasten mit Zusatz DU 31

Die Verbindungskabel von der HF-hpparatur fuhren direkt auf die Anschlussklemmen des Telephonzusatzes. Der Anschluss der Telephonleitung fuhrt auf die Tf. Dose auf der Kastenrückwand.

3.3 Steuerkablage

Die Verbindung zwischen den Geräten erfolgt über mehradrige Steuerkabel. Durch den apannungsabiall an den Steuerleitungen und der Verlust der NF-Leistung begrenzt sich die max. Länge des Kabels KV 22 zwischen den HF-Geräten und dem Zusatz auf ca. 20 m . Für längere Verbindungen sind Spez.Kabel vorzusehen.

BROWN BOVERI
RT.
G 5. N 62
5 (6)

3.4 HF-Kablage

Das Antennenkabel wird gemäss Schema C-A 33 auf N 2 einer Frequenzweiche gefuhrt. Die der Frequenzlage entsprechenden Ausgänge N 1 und $N 3$ der Frequenzweiche werden je durch ein HF-Kabel mit N 3 des Senders und N 3 des Empfängers verbunden. Letztere Kabel sind entsprechend den Betriebsfrequenzen auf eine bestimmte Länge zugeschnitten und dürfen nicht verwechselt werden. Sind Längenänderungen notwendig, so sind die Angaben zur Bestimmung der zulässigen Kabellängen auf der Zeichnung C-A 33 zu erfuillen.

4. Funktion und Stromlaufbeschreibung

4.1 Speisung (siehe Funktionsschema BN II.)

Das Einschalten der Anlage erfolgt mit Schalter S 3 am Netzgerät.
Ueber Transformator T I liefert das Gerät die Heizspannung H und die Relaisspannung DC. Die Heizspannung H speist alle Röhrenhejzungen, den Speiseteil des Empfängers und ausserdem Thermokontakt S 1 im Sender iber H, Heizwicklung S 1 , Ruheseite sv ${ }^{I}$ - Kontakt, Masse. Nach dessen Verzögerungszeit schliesst der Kontakt und legt damit die Wicklung von Relais SV an Masse. Die DO-Spannung bringt das Relais zum Aufzug. Der Wechselkontakt trennt die Thermokontaktheizung $a b$ und legt mit der Arbeitsseite einen Naltestromkreis parallel zum Thermokontakt. Gleichzeitig schaltet sv $^{I I}$ - Kontakt die DC-Spannung auf die DR-Leitung, die zurïck zum T-Relais (Tastrelais) im Netzgleichrichter führt. Damit wird es möglich, durch Erden der TR-Leitung das Tastrelais zu betëtigen. Letzteres schaltet die Netzspeisung liber Sicherung F 4 auf den Anoden-Spannungstraio T 2. Durch diese Verzögerungsschaltung wird verhindert, dass bei kalten Röhren die volle Leerlaufspannung des UT-Gleichrichters auf die Schaltung wirksam wird. Bei abgetrenntem Sender kann keine Anodenspannung erzeugt und auf nicht-

Stationstypen RT 5
Sende- und Empfangsstation ortsfest C-N 62
BROWN BOVERI RT
G 5. N 62
eingesteckte Kabel gegeben werden :

4.2

NF-Stromkreise urid Steuerleitungen
Die Steuerung der HF-Apparatur erfolgt entsprechend dem Ablauf einer Telephonverbindung automatisch aus dem Telephonzusatz GU 31. Die Relaisspannung und Röhrenspeisung wird dem Gleichrichter BN 11 entnommen. Die Funktionsweise ist unter Kapitel G 4 "drahtloser Teilnehmeranschluss " ausfuhrlich beschrieben.
5. Anpassung der Geräte

5.1 Empfänger

Um den Frequenzgang den NF-Steuersignalen anzupassen ist Kondensator C 140 mit 5000 pF auf der Frimärseite des Ausgangsiubertragers I 131 entfernt. Die Sekundärseite ist auf einen Belastungswiderstand von 20 Ohm angepasst.

Ra an Anzapfung $\operatorname{rot}(r)$
Rb " " gelb (gb)
Anzapfungen $b I(b l a u)$ und $g n(g r i n)$ sind iberbrickt. In Anlagen mit Spezialausfuhrung GU 3I-I GI ist der Ausgangstrafo im Empfänger für 100 Ohm Anpassung ausgeriart.

5.2 Telephonzusatz GU 31

Generelle Massnahmen:
Auf Strips N 2 sind die Anschliusse 21/22 und 23/24 zu Uberbriucken (Anschaltung der Gabelschalturg an den Trenntrafo T 3) 。

Betrieb mit Inverter

In dissem Falle ist der Zusatz GU 41 nach Schema GU 41 s 2 abgeändert. Dies ist notwendig, da die 4-Drahtleituncen nach der Ankopplung dex Signalubertraçune wieder aus dem Gerit herausgefuhrt werden miussen um sie uber den Inverter zu fuhren. Fuir Pegelanpassung sind die Angaben in der Beschreibung des Inverters zu beachten.

Gerätebeschreibung RT 5 Sender S 16 B 13

Inhaltsverzeichnie
Seite
I. Einleitung 2
2. Technische Daten 3
3. Speiseteil 4
4. Modulationsverstärker 4
5. Oszillator und Vervielfacher 6
6. HF-Endstufe 8
7. Anschlüsse 9
8. Abstimmvorschrift 10
9. Anpassungen und Ausbauvarianten 15
9.1 Einbau von Nebenfrequenzen 15

1. Einleitung

Schaltschema	HK 090145
Blockschema	HK 412073
Funktionsschema Moduiator	HK 411851
Montageschema	HK 090458
Messwerttabelle	HK 412093
Protokoll der Pegelwerte	HK 4l2105
Verzeichnis der Sicherungen	HK 405581

Der Ausbau des Senders gliedert sich in folgende Untereinheiten :
(Bezeichnung im Schema)

Speiseteil
Modulationsverstärker
Oszillator-Vervielfacher
HF-Endstufe
Anschiuisse

CA-Chassis
Mod.-Chassis
Osz.-Chassis
HF-Chassis
(Gehäuse)

Diese Einheiten sind auf dem Montagerahmen montiert, der durch Seitenwände, Deckel und Bodenplatte zu einem Gehäuse (Grösse ca. 180x 345x 190) ergänzt ist.

Die Anschluisse für Steuerung (Stecker N l), HF-Kabel (Stecker N 3) und Service-Messgerät (Stecker N 5) sind auf der Frontplatte des Gehäuses montiert.

Die Schaltung des Senders baut sich wie folgt auf : Im zweistufigen Modulationsverstärker V 91/92 wird das NF-Signal auf den für die Aussteuerung des Modulators notwendigen Pegel verstärkt.

Die Sendefrequenz wird vom Quarzoszillator V 21 abgeleitet. Dieser Stufe. folgt der Modulatorkreis A lit. der Diode V 22. Darauf folgen die Vervielfacherstufen V 41, V 42, V 43 und V 61 mit einer totalen Vervielfachungszahl von 24. Der letzten Stufe folgt die Endstufe V 62 und Antennenankopplung.

2. Technische Daten

Frequenzbereich 156-174 MHz
Maximale Anzahl umschaltbare
HF-Kanäle (Nebenfrequenzen)
6
Minimaler Frequenzabstand zwischen
2 nebeneindanderliegenden Kanälen 50 kHz
Maximaler Frequenzabstand zwischen
höchster und tiefster Nebenfrequenz 500 kHz
Frequenzgenauigkeit $\left(-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}\right) \quad \pm 1,5 \cdot 10^{-5}$
Speisung
Leistungsaufnahme
Heizung 12,6 V
Anodenspannung $450 \mathrm{~V}=$
Antennenleistung
aus Netzgerät BN 1l/12
Standby : Senden :
2,5 A 2,5 A

25 Watt

Modulation
FM (PM-Charakteristik)
Frequenzhub f_{H} begrenzt auf
NF-Frequenzband (Pre-emphasis 6 db/octave)
NF-Eingang (automat. Pegelregler)
Geräuschabstand
$\max . \pm 15 \mathrm{kHz}$

Klirrfaktor
$300-3000 \mathrm{~Hz} \pm 3 \mathrm{db}$
min. 100 mV (600 Ohm)

Dämpfung der Nebenwellen (m. Filter) 80 db " " Oberwellen (m. Filter) 60 db

Röhrenbestiuckung

| | A equ i val en t | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 6 | AL 5 5 | EB 91 | 5725 | EAA 901 |
| 4 | 6 AM 5 | EL 91 | 6516 | | |
| 1 | 6 BA 6 | EF 93 | 5749 | | |
| 1 | 5763 | | 6062 | QE | 03/10 |
| 2 | 6252 | | | QQE 03/20 | |

Sicherung F 2
Almessung, Normalgehäuse
Gewicht

2 A für Ventilator $350 \times 190 \times 180 \mathrm{~mm}$ $7,2 \mathrm{~kg}$
3. Speiseteil

Im Speiseteil (CA-Chassis) sind folgende Elemente untergebracht :

- Siebglieder für die Anoảenspannung UT (über Anschluss N 1/10 aus dem Speisegerät) bestehena aus den Siebkondensatoren C 5 und C 6 mit Symmetriewiderständen R 1 und R 2.
- Spannungsteiler für die Speisung von Oszillator, Vervielfacher, Modulator, sowie der Schirmgitter der Treiber- und Encstufe (260 V) bestehend aus den Widerständen R 3 und R 4 mit den Siebkondensatoren C 7 (und C 8).
- Senderelais S mit zusätzlichem Umschaltkontakt $s^{I I}$ zur Blockierung der Squel气hschaltung im Empfänger (RS-Leitung).
- Hilfsrelás SV und Thermokontakt S 1. zur verzögerten Einschaltung der Anodenspannung UT.
- Ueber Stecker N i/3 wird eine negative Hilfsspannung UG ca. 35 V eingeführt. Sie dient zur Sperrung der Treiber- und Endröhre, wenn deren Aussteuerung fehlt.
- Widerstände R 5 und R 6 als Spannungsteiler für die Messparnung an M l.
- Widerstand R 7 zur symmetrierung der Röhrenheizung.

4. Modulationsverstärker

Der Modulationsverstärker besteht im wesentlichen aus : Eingangsregler R 92
Verstärkerröhren V 91, V 92
Eingangsuibertrager T 91
Klipperschaltung G 91, G 92
Stromkreise für die automatische Regelung R 109, R 108, C 98, C 99.

Neben der eigentlichen Verstärkung der Modulationssignale, hat die Schaltung die Aufgabe, zu verhjndern, dass der Modulator des Senders unzulässig ausgesteuert wird. Kurzzeitjge Modulationsspitzen werden durch die Begrenzerdioden abgeschnitten, während hohe Pegel eine automatische Verstärkungsregulierung ansprechen lassen, die den Modulationsgrad auf normale Werte zuruickregelt.

Der Abgriff des Regel-Potentiometers R 92 liegt am Eingang des zweistufigen Verstärkers V 91, V 92. Im Ausgangskreis der Röhre V 92 liegt die Serieschaltung des RC- liedes C 95/R 103 und des Transformators T 91. Diese bewirkt folgendes :

An der Anode der Röhre wird uber C 96 die Spannung zur Erzeugung der automatischen Regulierung abgenommen.

Durch Wahl der Zeitkonstante des RC-Gliedes C 95/R 103 und durch die Wirkung der Drossel D 91 entsteht bis 1000 Hz ein flacher Frequenzgang, dafür steigt die auf den Pegelregler wirkende Spannung linear an. Diese Frequenz-Charakteristik ist erwünscht um den Frequenzhub möglichst konstant $z u$ halten. Die so erhaltene NF-Spannung wirkt auf das Diodensystem 2/5 der Röhre V 22. Uebersteigt sie deren Vorspannung, wird das Signal gleichgerichtet und wirkt uber die Siebglieder R 108, R 109, C 98, C 99 als Regelspannung auf das Gitter der ersten Röhre V 91.

An der Primärwick? ung des Uebertragers sind die Klipperdioden G 91, G 92 angeschlossen. Uebersteigt die Wechselspannung die Vorspannung der Dioden, werden diese leitend und bewirken eine Clippung der Modulationsamplitude. Mit dieser Schaltung werden kurzzeitige Spitzen, die die automatische Regulierung nicht zum Ansprechen bringen können, unterdrückt. Die automatische Regulierung ist so eingestellt, dass der Frequenzhub auf ca. $\pm 15 \mathrm{kHz}$ beschränkt wird. Die Schwelle für den Clipper liegt bei $\mathrm{ca} . \pm 17 \mathrm{kHz}$ Hub.

Die Ansprechzpannung der automatisehén Regulierung kann durch die Grösse des Widerstandes R 105 eingestellt werden. Am Kathodenwiderstand R 94 wird die Kontrollspannung M 8 abgegriffen, dies ermöglicht das Einsetzen der Regelspannung (Rückgang des Kathołenstromes) zu kontroliieren.

Der Arbeitspunkt des Clippers wird mit dem Ab̧riff von $R 4$ eingestellt.

5. Oszillator und Vervielfacher (Oszillatorchassis)

Funktionsschema HK 411851
Diese Einheit enthält den Quarzoszillator, die ModulationsDiode und drei Vervielfacherstufen.

Im Gitterkreis der Oszillatorstufe V 21 liegt der SchwingQuarz X 21 eingebaut in Halter U 21. Die Ruickkopplung erfolgt iuber den kapazitiven Teiler C 22/C 23 auf die Kathode. Mit dem Trimmer C 30 parallel zum Quarz kann dieser in kleinen Grenzen ($\pm 3.10^{-5}$) "gezogen" werden. Der Anodenkreis A 1 ist auf die Oszillatorfrequenz abgestimmt. Die verstärkte HF-Spannung steuert uiber den Kopplungskondensator C 29 die nachfolgende Ver-vielfacher-Stufe V 41 aus. Durch zusätzlichen Einbau weiterer Quarze X 22 bis X 26 mit Paralleltrimmern C 3l/C 33 bzw. C 401 bis C 406 und den notwendigen Umschaltrelais "B", "C" und "D" kann der Oszillator uber drei Steuerleitungen auf max. sechs verschiedene Frequenzen umgeschaltet weaden.

Näheres siehe in Kapitel "Anpassungen und Ausbauvarianten'.
Die Modulatordiode V 22 liegt uber C 27 parallel zum Kreis A l. Die Diode wirkt als ohmsche Belastung in Serie mit der Kapazität C 27. Die Kathode ist durch die Gleichspannung V_{k} (Kathode V 92) positiv vorgespannt, d.h. nur die, diese Spannung uibersteigenden HF-Amplituden werden gieichgerichtet. Der Vorspannung V_{k} ist zudem noch die niederfrequente Wechselspannung $V_{\text {Mod. }}$ iberlagert. Die Gleichrichtung der HF-Amplituden und damit die wirksame ohmsche Belastung ändert mit $V_{\text {Mod. }}$. Diese Widerstandsänderung in Serie mit der Kapazität C 27 ergibt für den Schwingkreis A 1 eine variable kapazitive Belastung, die die Phasenlage der Oszillatorschwingung steuert. In gewissen Grenzen ändert der Phasenwinkel φ proportional mit $V_{\text {Mod }}$ und damit auch die Momentanfrequenz der Oszillatorschwingung am Gitter der Röhre V 41.

Aus dem Phasenhub kann der Frequenzhub wie folgt errechnet werden :
$f_{H}=f_{\text {Mod }} \quad \varphi H \quad f_{H}=\underset{\text { quenz }}{ } \quad \underset{\text { Frequenzhub der Oszillatorfre- }}{ }$

$$
\begin{aligned}
f_{\text {Mod }}= & \text { Modulationsfrequenz } \\
\varphi H= & \text { Phasenhub der Oszillatorfrequenz } \\
& \text { (in Radianten) }
\end{aligned}
$$

Die Verzerrungen der Modulationsschaltung sind desto geringer je kleiner die Aussteuerung bzw. der Phasenhub ist. Um bei geringen Verzerrungen einen hohen Phasenhub und damit, auch Frequenzhub am Senderausgang zu erreichen, muss der Phasenhub, d.h. auch die Oszillatorfrequenz vervielfacht wєrden. Al.s Vervielfachungszahl wurde $n=24$ gewählt.

Es ist :
$\varphi H A=n . \varphi H \quad \varphi H A=$ Phasenhub am Senderausgang
und
$f_{H A}=n \varphi H \cdot f_{\text {Mod }} \quad f_{H A}=$ Frequenzhub am Senderausgang
Die Vervielfachung der Oszillatorfrequenz erfolgt in vier Stufen. Die drei ersten Stufen mit den Röhren.V 4l, V 42 und V 43 sind im Oszillatorchassis untergebracht. Die zugehörigen Kreise sind wie folgt abgestimmt :

Kreis A 1
$1 \mathrm{x} \quad \mathrm{f}_{\text {osz }}$.
A 2
2 x
$\mathrm{I}_{\mathrm{osz}}$.
A 3
$4 \mathrm{x} \quad \mathrm{f}_{\mathrm{osz}}$.
A 4
$8 \mathrm{x} \quad \mathrm{f}_{\mathrm{osz}}$.
Die Kreise A 2...A 4 bestehen aus je einem zweikreisigen, induktiv gekoppelten Bandfilter. Dies verbessert die Unterdrückung von unerwünschten Dberwellen.

Zur Erleichterung von Abstimmarbeiten und zur Ueberwachung der Röhren sind die Gitterableitwiderstände so aufgeteilt, dass die Gitterströme mit dem Service Messgerät überwacht werden können (Messpunkte M 2, M 3 und M 4).

Funktionsmässig gehören noch der Schalter S 91 "Abstimmen" und die Messwiderstände R 110 + R 111 zum HF-Chassis, sind aber aus Konstruktionsgriunden im Modulatorchassis untergebracht.

Der Schalter S 91 öffnet auf Stellung "roter Ring" (Abstimmen) die Ueberbrückung von Vorwiderstand R 112 in den Schirmgitterspeisungen von Treiber- und Endröhre. Dadurch wird eine Ueberlastung der Röhren bei Verstimmung verhindert. Gleichzeitig verkleinert eine zusätzliche Belastung die feste.neg. Vorspannung der beiden Röhren, so dass auch auf Stelluing "Abstimmen" (roter Ring) mit reduzierter Schirmgitterspannung eine Gitterstromanzeige vorhanden ist, auf die abgestimmt werden kann.

Das HF-Chassis enthält die letzte Vervielfacherstufe V 61 und die Endstufe mit der Röhre V 62, sowie den Antennenkreis. Die Aussteuerung erfolgt durch die Gegentaktspannung der Sekundärseite des Kreise A 4. Dieser ist auf die 8•fache Oszil-lator-Frequenz abgestimmt.

Der Anodenkreis A 5 besteht aus einem Lechersystem und ist auf die 24-fache Oszillator-Frequenz abgeglichen. Die Spannung an diesem Kreis steuert uber den Auskopplungskreis L. 66 die Endstufe V 62 aus. Der Auskopplungskreis ist mit den Kondensatoren C 70 und C 71 und der Kurzschlussbriucke abstimnbar.

Die Endstufe arbeitet auf das abstimmbare Lechersystem A 6, das ebenfalls auf die 24-fache Oszillator-Frequenz abgestimmt ist. Die induktive Schlaufe L 72 koppelt die HF-Energie auf den Antennenstecker N 3. Trimmer C 74 erlaubi die Abstimmung des Anodenkreises. Der Serietrimmer C 77 stimmt störende Streuinduktivitäten aus der Koppelleitung heraus. Die Messchlaure koppelt etwas HF-Spannung auf die Messdioae G 8l.

Die dabei entstehende Richtspannung kann mit dem ServiceMessgerät überwacht werden (M 7). Diese Anzeige vereinfacht Abstimmarbeiten und erlaubt eine einfache Ueberwachung der Endstufe.

Das Oberwellen-Filter, bestehend aus C 81...C 82 und L 81, beschneidet das ausgestrahlte HF-Band im oberen Frequenzbereich.

Es soll vor allem die unerwünschten Oberwellen des Senders unterdrücken.
7. Anschliusse auf der Vorderfront des Gehäuses

Stecker N I : Anschluss für Steuer- und Speiseleitungen

Anschl.	Symbol
1	M
2	TR
3	UG
4	RS
5	Ma
6	Mb
7	FB
8	H
9	UT
10	DR
11	NC

Masse, Ruickleitung von H und DC
Tastleitung fuir Senderelais S (und Tastrelais T)
$-36 \mathrm{~V}=$ von Speisegerät als Vorspannung für Treiber- und Endröhre
Steuerleitung zur Blockierung des Squelch im Empfänger

Modulations-Eingang
Steuerleitungen für Frequenzumschaltrelais B und C
12 V Heizspannung der Röhren
Anodenspannung $450 \mathrm{~V}=$ vom Speisegerät
Sicherheitsstromkreis zur Steuerung des Tastrelais T im Speisegerät

12 V Gleichspannung, Betriebsspannung für Relais.

Stecker N 2 : Anschluss für Batteriekabel

1,2 5,6	B	Bei Netzspeisung wird dieser Stecker nicht benuitzt.
3,4		
7,8	M	
F-Stecker N 3 :	Sender-Ausgang. Anschluss der Anten- ne mit Koaxialkabel.	

Messtecker N 5 : Anschluss für Service-Messgerät MD 51 (schwarzer Novalstecker)

Stellg. bzw.
Symbol Anschluss

M I	UT	Sender-Anodenspannung
M 2	A 1	Gitterstrom Kreis A 1, Röhre V 41
M 3	A 2	A 2, " V 42
M 4	A 3	A 3, " V 43
M 5	A 4	$\text { A 4, } \underset{(\text { Treiber })}{: V 1}$
M 6	A 5	A5, Röhre V 62 (Endröhre)
M 7	Ant.	Antennenstromanzeige
M 8	ADC.	Kathodenstrom der Modulatorröhre V 91
M 9	TR	Tastleitung für Senderelais S

Messtecker N 91 : im Modulator zum Anschluss von Service-Messgerät MD 51 (roter Novalstecker)

I	V 61	Anodenstrom
II	V 62	Anodenstrom

8. Abstimmvorschrift Sender S 16 B 13

Messwerttabelle HK 412093
Protokoll der Betriebswerte
HK 412105
Schaltschema
HK Q90145
Montageschema
A. Messgeräte

1 Service-Messgerät MD 51
1 HF-Wattmeter für 40 Watt oder
Kunstantenne MA 51 mit Leistungsmesskopf MAZ 51
fur Kontrolle der Modulation
I Hubmeter oder geeichter Messempfänger
für $20 \mathrm{kHz}-\mathrm{Hub}$
1 Tongenerator $300 \mathrm{~Hz} \ldots 4 \mathrm{kHz}$
1 Kathodenstrahloszil?.ograph oder Klirrfaktormessbrücke.
B. Massnahmen bei Röhrenwechsel

Röhren V 21, V 22, V 91, V 92
nachstimmen nicht notwendig
Röhren V 41, V 42, V 43
Anzeige an M 2 und M 3, M 4 und M 5 kontrollieren. Abstimmen nach Kapitel C ist nur notwendig, wenn die Anzeige nicht innerhalb der Toleranzen liegt.

Röhre V 61

- Stimme Kreis A 4/G (C 62) auf max. Gitterstromanzeige an M 5 ab.
- Stimme Kreis A 6/A (C 74) für max. HF-Anzeige an M 7 ab .

C. Massnahmen bei Frequenzwechsel und jährlichem Unterhalt

Die gleiche Abstimmkontrolle soll auch im Rahmen der jährlichen Unterhaltsarbeiten durchgefuhrt werden. Ist die Anlage mit Nebenfrequenzen ausgerüstet, so verwende man einen Kanal mit der mittleren Frequenzlage zum Abstimmen.
a) Vorstufen :

- Stelle den Schalter S 91 auf Stellung "Abstimmen" (roter Ring)
- Schliesse den Sender mit einem HF-Wattmeter oder der Kunstantenne MA 51 und Leistungsmesskopf MAZ 51 ab.
- Setze den neuen Quarz mit Halter in die vorgesehene Röhrenfassung U 21 bzw. U 22.
- Stimme den Kreis A 1 (L 22) für max. Gitterstrom an M 2 ab.
- Stimme die Spulen A 2/A (L 41) und A 2/G (L 42) wechselweise für max. Gitterstrom an M 3 ab.
- Stimme die Spulen A 3/A (L 43) und A 3/G (L 44) wechselweise für max. Gitterstrom an M 4 ab .
- Stimme den Kreis A 4/G (C 62) für max. Gitterstrom an M5 ab.
- Stimme den Kreis A 5/A (C 67) auf max. Anzeige an M 6 ab
- Regle die beiden Abstimmkondensatoren A 5/G1 (C 70) A 5/G 2 (C 71) und das Lechersystem A 5/G (L 65) wechselweise für maximalen Gitterstrom an M 6. Beachte dabei, dass die beiden Tauchtrimmer C 70 und C 71 möglichst gleiche Eintauchtiefen haben.

Symmetriekontrolle : Beim Verdrehen der Trimmerschrauben um eine halbe Umdrehung soll der Instrumentenausschlag M 6 bei beiden Trimmern um den gleichen Skalenwert sinken, andernfalls sind die Trimmerstellungen zu korrigieren.

Wird der Kreis A 5 auf eine neue Frequenz frisch abgestimmt, so kann unter Umständen (bei starker Verstimmung) keine Gitterstromanzeige gefunden werden. Versuche dann die Abstimmung des Gitterkreises unter systematischer Verstimmung des Lechersystems A 5/G (I 65) solange bis ein Gitterstrom auftritt. Danach kann die endguiltige Abstimmung wie oben angegeben durchgeführt werden.
b) Endstufe

- Nach Röhrenwechsel und bei periodischer Kontrolle ist nur Abstimmen nach Kapitel B notwendig.
- Bei Frequenzwechsel oder auch bei veränderten Lastverhältnissen (Einbau von Weichen, Filter oder auch neuen Antennen) ist ausserdem die Ankopplung A 6/K (L 72) und die Abstimmung von A 6/C (C 77) wie folgt zu uiberprüfen :

Die HF -Anzeige M 7 darf im Falle von fehlenden Messgeräten als Abstimmindikator verwendet werden. Benuitze aber wenn möglich den Leistiangsmesskopf MAZ 51 mit Kunstantenne oder ein HF-Wattmeter.

Abgleich auf Ersatzlast

- Vermindere die Kopplung der Antennenschlaufe durch max. Eindrehen an der Schraube A 6/K (L 72).
- Stelle den Schalter S 91 auf Stellung "Senden" (roter Punkt).
- Stimme den Kreis sofort wechselweise an A 6/A (C 74) und A 6/C (C 77) ab für max. Anzeige auf Stellung M II roter Messtecker. an Messkopf MAZ 51, Wattmeter oder wenn nicht vorhanden auf Mess-Stellung M 7 am Service-Gerät MD 51.
- Vergrössere die Kopplung von A 6/K (L 72) in Stufen, stimme jeweils nach obigen Angaben ab und besiimme so den Kopplungsgrad, für den eine max. HF-Leistung ausgekoppelt wird.
- Korrigiere die Abstimmung der Vorkreise A 4 und A 5.
- Kontrolliere, ob folgende Grenzwerte nicht uberschritten werden :

Gitterstrom V 62, Anzeige an M 6 max. 35 Skt. Ist aie Anzeige grösser, sc verkleinere das LC-Verhältnis des Kreises durch Eindrehen der Trimmer A 5/G 1 und A 5/G 2 und Nachsimmen an A 5/G. Anodenstrom V 62, Anzeige an M II (roter Messtecker auf N 91) max. 31 Skt.

Ist die Anzeige grösser, so ist der Antennenkreis etwas loser anzukoppeln, bis der Wert im zulässigen Bereich liegt.

Korrektur auf Betriebslast

Nachdem allfällige Frequenzweichen, Filter und Antennenanlagen nach den zugehörigen Abstimmvorschriften bereitgestellt sind, ist die betriebsmässige Antennenschaltung unter Zwischenschaltung des Leistungsmesskopfes am Senderausgang (ohne zusätzliche Kabellängen) anzuschalten.

- Korrigiere Abstimmung der Endstufe wechselweise an A 6/A und A 6 A 6/C für maximale Anzeige an M II, roter Messtecker an Messkopf MAZ 51.
- Setze den Messkopf in die Antennenleitung und korrigiere Abstimmung allfalliger Filter oder Weichen wie in den zugehörigen Abstimmvorschriften angegeben.
c) Abgleich auf Nennfrequenz
- Kontrolliere das Sendesignal nach einer Anlaufzeit von 20 Minuten mit einem Wellenmesser mit einer Genauigkeit von 10^{-6}.
- Ziehe die Oszillatorfrequenz mit Trimmer C 30 (C 30-C 35) bis die Sendefrequenz stimmt.
- Fehlt ein entsprechender Wellenmesser, so ist der Sender auf einen Empfänger, dessen Empfangsfrequenz stimmt, abzugleichen. Ist auch kein passender Emplänger vorhanden, so ist der Trimmer nicht zu verstellen.

d) Abgleich Modulatorkreis A l

- Kontrolliere den Gitterstrom M 2 und gleiche wenn notwendig die Schwingamplitude des Oszillators durch Verändern von Widerstand R 20 auf 30... 35 Skt. ab.
- Moduliere den Sender mit einer Modulationsfrequenz von 1 kHz für 10 kHz Hub. Kontrolliere den Hub mit dem Hubmeter.
- Schliesse am NF-Ausgang des Hubmeters den Kathodenstrahloszillographen oder die Klirrfaktormessbrücke an.
- Regle die Abstimmung am Kreis A 1 auf beste Kurvenform bzw. geringsten Klirrfaktor, unter Nachregelung des Hubes (M 2 3040 Skt.)

Steht keine Messeinrichtung zur Verfugung, so wende folgende Faustregel an :

Abstimmen auf max. Gitterstrom und dann Eisenkern eindrehen, bis der Wert auf 90 o/o des Maximums abfäll.t.

Sind alle Abstimmungen ausgeführt, so sollen folgende Werte erreicht werden.

HF-Anzeige auf Mess-Stellung M II mit Messkopf MAZ 51 am Senderausgang : 26 Skt. entsprechend 20 Watt nach einem Bandfilter : Abfall entsprechend Durchgangsdämpfung des Filters
nach einer Fraquenzweiche : 1 db Abfall
Im Falle von schlecht angepassten Antennenimpedanzen können noch zusätzliche Abweichungen von bis zu 2 db auftreten.

D. Angaben zu Abgieichwerte

Die im Schema mit "Abgleichwert" bezeichneten Positioner sind nach folgenden Gesichtspunkten bestimmt worden :

Widerstand R 20 : bestimmt die Schwingamplitude von Oszillator V 21. Er gleicht vor allem unterschiedliche Aktivitäten des Quarzes aus. Er wird für eine Anzeige an M 2 von $30 \ldots 35$ Skt. eingestellt. Abweichungen verändern die Modulationssteilheit.

Widerstand R 3 : regelt die Anodenspannung der Vorstufen auf 260 Volt.

Widersend R 4 : enthält einen Abgriff eingestellt auf ca. 300 Volt. Diese Spannung bestimmt den Eirsatzpunkt des Clippers im Modulator. Er wird so eingestellt, dass die Begrenzung bei einem Frequenzhub von ca. $\pm 18 \mathrm{kHz}$ wirksam wird. ($f_{\text {mod. }}$ l kHz)

Widerstan $R 81$: mit diesem Wert wird die Anzeige an M 7 für den Nennwert ler HF-Leistung ca. 25 Skt. eingestellt.

Widerstand R 105 : bestimmt den Einsatz der Verstärkungsreglung im Modulator; wird so eingestellt, dass der Frequenzhub von $\pm 15 \mathrm{kHz}$ nicht uberschritten wird ($\mathrm{f}_{\text {mod. }} \mathrm{l} k \mathrm{kHz}$).

Kondensator C 20 : In der Regel sind hier 10 pF Festkapazitäten eingebaut. Für Quarze mit abnormalem Zieiverhalten für die der Variatjonsbereich des Trimmers nicht ausreicht, kann der Wert verkleinert oder bis max. 20 pF vergrössert werden. Eine Verkleinerung (oder gänzlicher Wegfall) der Kapazität wird insbesondere in Geräten mit mehreren Nebenf̣requenzen notwendig.
9. Anpassungen und Ausbauvarianten

9.1 Einbau von Nebenfrequenzen

Schema Nebenfrequenzen FXS 2-4
Einbau-Zeichnung 2 Frequenzen
Einbau-Zeichnung 3 Frequenzen
Einbau-Zeichnung 4 Frequenzen Schema Nebenfrequenzen FXS-11 (6 Freq.)

HK 405543
HK 305966
HK 305967
HK 305968
HK 415002

Die Normalausführung besitzt nur den Quarz X 21 in Halter U 21 ohne Relais für die Frequenzumschaitung. Die Relais der Umschalteinheiten FXS 2-4 sind fest eingelötet. Bei Aenderungen der Speisespannung ist die ganze Einheit auszuwechseln.

Einbau einer zweiten Frequenz

Den Quarz X 22 in Halter U 21 einsetzen und wieder in Fassung U 21 stecken. Frequenzumschalt-Einheit FXS 2 (richtige Speisespannung beachten) und Trimmer C 31 einbaiuen und nach Einbauzeichnung verdrahten.

Einbau von drei bzw. vier Frequenzen

Allfallige bereits vorhandene Einheiten ausbauen. Frequenzumschalteinheit FXS 3 bzw. FXS 4 (Betriebsspannung beachten) einbauen uid nach Einbauzeichnung anschliessen. Trimmer C 31, C 32 und ev. C 33 einbauen und verdrahten.

Quarze X 21 und X 22, bzw. X 23 und X 24 je in gemeinsamem Halter auf die Fassung $U 21$ bzw. U 22 stecken.

Einbau einer Sechs-Frequenzeinneit FXS-11

Allfällige bereits vorhandene Quarze, Trimmer, Relais und Fassung U 22 ausbauen. Einsetzen der Sechs-Frequenzeinheit FX-ll nach Anleitung HK 412014. Der Anschluss erfolgt iover Octalsockel N 401, der im Gerät auf Fassurg U 21 gesteckt wirã (von oben zugänglich).

In dieser Einheit sind die Relais stechbar und körnen leicht ausgewechselt werden. Anpassung an andere Betriebsspannung ist durch Austausch der Relaie ebenfalls möglish.

Abstimmen :

Die Frequenzen aller Quarze sind nach dem Einbau mit dem Paralleltrimmer nachzustellen (C 401-407).

Für Quarze mit abrurmalem Ziehverhalten, für die der Variationsbereich der Paralleltrimmer.nicht ausreicht, kann ein FestKondensator bis max. 20 pF zugeschaltet werden.

9.2 Anpassungen an cie Speisungsvarianten

Der Sender S 16•B 1 ist auf folgende Speisungsarten umschaltbar :

6 Volt $=$ Batteriespeisung (S 16 B 1l)
12 Volt = Batteriespeisung (S 16 B 12) oder Netzspeisung mit separatem Netzgleichrichter (S 16 B 13).

Je nach Speisungsart sind folgende Schaltungen herzustellen :
Einbeu des casserden Umformers U 1 :
Fiur 6 Volt $=$: Typ XSU 1
für 12 Volt = : Typ XSU 2
(Bei Netzspėsung wird kein Umformer benötigt)

Einbau :

- Zwei Anschiusslitzen (L rot 21 cm , schwarz $15 \mathrm{~cm}, 0,5 \mathrm{~mm}^{2}$ Querschnitt) für Sekundärspannung am Drosselkasten einlöten und mit einem Bougierohr uberzeihen. Nach dem Einlöten Deckel des Drosselkastens wieder montieren.
- Masseleitung (Litze blank, $L=7, j \mathrm{~cm}, 1,5 \mathrm{~mm}^{2}$) an der. vorgesehenen Lötöse des Umformerfusses anlöten. Die neuen Ausfuhrungen werden mit angeschlossenen Sekundärleitungen und der Masselitze geliefert.
- Primär- und Sekundärleiturig Aurch die rorgesehenen Löcher durchziehen und Umformer unter Ausnützung der Gehäuseaussparung einschieben und mit den vier Gumnipuffern festschrauben.
- Die Primärleitungen sind bei der Durchfiuhrung durch eine Bandage zu schuitzen.

Umpolen der Batterjespannung

Im Normalfall lifegt der Minuspol an Masse. Ist eine Umpolung nötig, sind die Primärschluisse $1 / 2$ des Jmformers an der Lötstiftenreihe zu vertauschen.

Aenderung der Speisespannung :

6 Volt =-

Speisung :

- oder + Masse

12 Volt = oder ~ - oder + Masse

Heizkreise

Die Lötstiften des CAChassis sind gemäss Angaben im Schaltschema wie folgt $z u$ verbinden : $\quad 7 \mathrm{mit} 8$

	Wicklungen paral-	Wicklungen in
	lel schalten :	Serie schalten :
Senderelais S	1 mit 2	2 mit 4
(Umformerrelais P 1)	3 mit 4	
	verbinden	verbinden

Aenderungen und Nachträge zu den Beschreibungen der RT 5 - Geräte.

Inhaltsverzeichnis

1. RT 5 Empfänger aller Frequenz
bereiche 2
2. Quarzthermostat-Quarzhalter 2
3. Ausbau auf Nebenfrequenzen $2+4$ Frequenzen 2
4. 6-Frequenzeinheit FX 11 3
5. RT 5 Empfänger aller Frequenzbereiche

Alle Empfänger ab B No. 97034 und mobilen Empfänger mit Auslieferung $a b 1.1 .61$ sind mit einer zusätzlichen Sicherung $F 12$ auf der Primärseite des Anodentransformators $T 11$ ausgeruistet.

Nennwert des Schmelzeinsatzes :
Speisung 6 Volt: 10 A träge (HK 403181 P 31)
Speisung 12 Volt: 4 A mittelträge (HK 403150 P 57)
Die Sicherung schützt den Transformator bei Vibratordefekt. Materialbausatz für nachträglichen Einbau

HK 415215
Einbauzeichnung
HK 200112
2. Quarzthermostat-Quarzhalter

Die Geräte (Sender- und Empfänger), die seit 1960 ausgeliefert wurden, besitzen Quarze mit erhöhter Stabilität. An Stelle der geheizten Quarzthermostate werden einfache Halter Typ 1030 verwendet.
3. Ausbau auf Nebenfrequenzen (Sender und Empfänger)

2-4 Frequenzen:

Entgegen den Angaben in den Beschreibungen der Sender und Empfänger unter 9.1 Einbau von Nebenfrequenzen, wird seit 1960 eine verbesserte Ausführung geliefert. Die Relais für die Umschaltung auf $2+4$ Frequenzen werden auf einer Leiterplatte eingelötet. Die Platte wird nach Angaben auf den entsprechenden Einbauzeichnungen in das Oszillatorchassis montiert und angeschlossen.
Es können keine Umschaltungen auf andere Betriebsspannungen vorgenommen werden. Ein Austausch von Relais ist ebenfalls nicht ohne spez. Lötvorrichtungen möglich, da die Relais fest in der Platte eingelötet sind.

Es gelten dabei folgende Unterlagen :

Sender :	Schema FXS 2-4	HK 405543	
	Ausbau 2-Frequenz	HK 305966	
	Ausbau 3-Frequenz	HK 305967	
	Ausbau 4-Frequenz	HK 305968	
Empfänger :			
		Schema FXE 2-4	HK 405517
	Ausbau 2-Frequenz	HK 305969	
	Ausbau 3-Frequenz	HK 305970	
	Ausbau 4-Frequenz	HK 305971	

4. 6-Frequenzeinheit FX 11

Eine verbesserte Konstruktion mit 5 gekapselten Relais ermöglicht das Kurzschliessen von allen abgeschalteten Quarzen. Ein störendes Mitschwingen ist damit unmöglich. Diese Einheit hat auch keine Thermostaten mehr, da Quarze mit verbesserter Stabilität verwendet werden.
Es gelten dabei folgende Unterlagen:

| SchemaSender
 Empfänger | HK 415002 |
| :---: | :---: | :---: |
| | HK 415054 |
| Einbauvorschrift Sender | HK 412014 |
| Empfänger | HK 412015 |

In dieser Einheit sind die Relais steckbar und können leicht ausgewechselt werden. Anpassung an andere Betriebsspannung ist durch Austausch der Relais ebenfalls möglich.Seite

1. Einleitung 2
2. Technische Daten 3
3. Speiseteil 4
4. Hochfrequenzteil 5
5. Zwischenfrequenzteil 6
5.1 ZF-Verstärker $8,5 \mathrm{MHz}$ 6
5.2 ZF-Verstärker $0,455 \mathrm{MHz}$ 6
5.3 Begrenzer und AVC-Kreis 7
5.4 Diskriminator 7
6. Niederfrequenzteil 8
7. Anschluisse 9
8. Abstimmvorschrift 11
9. Anpassungen und Ausbauvarianten 15
9.1 Einbau von Nebenfrequenzen 15
9.2 Speisungsvarianten 16
10. Einleitung

Schaltschema	HK 090147
Blockschema	HK 412074
Messwerttabelle	HK 412096
Montageschema	HK 090462
Protokoll der Betriebswerte	HK 412048
Verzeichnis der Sicherungen	HK 405581

Der Aufbau des Empfängers gliedert sich in folgende Untereinheiten :

Bezeichnung im Schema

Speiseteil
Hochfrequenzteil
Zwischenfrequenzteil
Niederfrequenzteil
Anschlüsse

VA - Chassis
HF - Chassis
IF - Chassis
AF - Chassis
(Gehäuse)

Diese Einheiten sind auf einem Montagerahmen montiert, der durch Seitenwände, Deckel und Bodenplatte zu einem Gehäuse ergänzt ist. Die Anschlüsse für die Speisung, Steuerung, HF-Kabel und Service-Messgerät sind auf der Vorderfront des Gehäuses montiert.

Die Schaltung des Empfängers baut sich wie folgt auf : Die HF--Vorstufen mit Röhren V 21 und V 22 verstärken das HF-Empfangssignal. Zwischen den Röhren V 21 und V 22 liegt das Bandfilter bestehend aus den Töpfen A 22/A 23. Ueber den Topfkreis A 24 gelangt das Signal auf die erste Ueberlagerungsstufe V 23 zur Erzeugung der ersten Zwischenfrequenz von $8,5 \mathrm{MHz}$. Die Stufe V 71 arbeitet als ZF-Verstärker auf dieser Frequenz und bringt das Signal auf die zweite Mischstufe V 72. Die damit erzeugte zweite Zwischenfrequenz von $0,455 \mathrm{MHz}$ wird uber das Bandfilter FH 31 auf die nachfolgenden Verstärker-Stufen $V 73$, V 74 , V 75 und die beiden Begrenzer V 76 und V 77 geleitet. Der Diskriminator A 77 demoduliert den HF-Träger.

Das so erhaltene NF-Signal gelangt auf die Squelch-Schaltung und den l-stufigen NF-Verstärker. Das Signal für die erste Ueberlagerung wird vom Quarz-Oszillator V 24 abgeleitet; dasjenige für die zweite Ueberlagerung vom Quarz X 71 im Kreis der Röhre V 72.

Frequenzplan :

Die Frequenzen berechnen sich wie folgt :

$$
\begin{aligned}
& f_{Q 1}=\frac{f_{\mathrm{E}}-8.5 \mathrm{MHz}}{4} \\
& f_{Q 2}=f_{1 Z F}-f_{2} Z F=8,045 \mathrm{MHz}
\end{aligned}
$$

Die eingeklammerten Werte können in Ausnahmefällen verwendet werden, um störenden Interferenzpfiffen auszuweichen.

2. Technische Daten

Frequenzbereich : $156-174 \mathrm{MHz}$
Maximale Anzahl umschaltbare, benachbarte HF-Kanäle: 6
(Die Normalausführung ist mit
I Kanal ausgeruistet, Zusätzliche
Kanäle, Nebenfrequenzen, können
nachträglich eingebaut werden)
Minimaler Frequenzabstand zwischen
2 nebeneinanderliegenden Kanälen
Maximaler Frequenzabstand zwischen
höchster und tiefster Nebenfrequenz
: 500 kHz
Frequenzgenauigkeit $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ $: \pm 1,5 \cdot 10^{-5}$

```
Speisung aus Netzgerät
    : 12 Volt 儿
Leistungsaufnahme
Empfindlichkeit für S/R = 20 db
Selektivität, Dämpfung für
NF-Ausgang, Leistung für 15 kHz Hub : 0,9 Watt an 5 Ohm
Frequenzband (de-emphasis 6 db/Octave): 300-3000 Hz \pm 3 db
Klirrfaktor
Squelch-Empfindlichkeit, regelbar
Störfrequenzabstand
: 8 %/o (für 0,9 Watt)
: 0,5 - 1,5 \muV
: 90 db
```

```
Röhrenbestiuckung
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \multicolumn{3}{|c|}{ A e q u i v a l e n t } \\
\hline 3 x & 6 AK 5 & EF 95 & 5654 & \\
\hline 1 x & 6 AL 5 & EB 91 & 5726 & EAA 901 \\
\hline 1 x & 6 AQ 5 & EL 90 & 6005 & 6 AQ 5I \\
\hline 6 x & 6 AU 6 & EF 94 & 6136 & \\
\hline 1 x & 6 BE 6 & EK 90 & 5750 & \\
\hline 2 x & \((12\) AT 7) & (ECC 81). & 6201 & ECC 801 \\
\hline
\end{tabular}
Sicherung : F ll, Anodenspannung UR : 0,125 A
Abmessung, Normalgehäuse : \(380 \times 190 \times 180 \mathrm{~mm}\)
Gewicht
\(: 8,7 \mathrm{~kg}\)
```


3. Speiseteil

Zur Speisung des Empfängers wird eine 12 Volt Wechselspannung (H) eingeführt. Im VA-Chassis erfolgt die Aufteilung uber Lötstift 6 auf die Heizstromkreise (Lötstiften 1, 5, 8) und den Anodentransformator T 11.

Die Einheit enthält folgende Stromkreise und Elemente :

- Anodentrafo T 11 mit Gleichrichter G 11
- Siebschaltung für Anodenstrom mit Kondensator C 13 und Drossel L 15.
- Sicherung F 11 in der Sekundärseite des Trafos T 11.
- Messwiderstände R 13, R 14 zur Kontrolle der DC-Spannung mit dem Service-Messgerät auf Stellung M 1 .

Die 12 Volt Speisespannung wird durch den Transformator T 11 auf ca. 200 Volt erhöht und iiber die Selenzellen $G 11$ gleichgerichtet. Die Siebglieder L 15 und C 13 glätten die Spannung. Die HF-Drossel L 16 entkoppelt hochfrequenzmässig die kritischen Heizkreise. Für die Speisung externer Zusatzgeräte wird die Anodenspannung UR über Lötstifte 7 auf den Gerätestecker N l geführt.

4. Hochfrequenzteil

Das Chassis enthält die HF-Vorstufen V 21/ V 22 und die erste Mischstufe V 23.

Der Quarzoszillator V 24 zur Erzeugung des ersten Ueberlagerungssignales ist ebenfalls in dieser Einheit untergebracht.

a) $\mathrm{HF}-\mathrm{Kanal}$

Das Empfangssignal gelangt uiber Antennenstecker N 3 auf den Eingangstopf A 21. Der Topf ergibt eine Vorselektion und Anpassung an die HF-Stufe. Zwischen den Röhren V 21 und V 22 liegt ein Bandfilter auf der Empfangsfrequenz, bestehend aus den Topfkreisen A 22 und A 23. Der anodenseitige Topf A 24 wird ebenfalls auf die Empfangsfrequenz abgestimmt. Die Kathode der Röhre V 23 erhält das Ueberlagerungssignal von Kreis A 27. V 23 arbeitet als Mischstufe. Das Bandfilter A 28 im Anodenkreis siebt die erste Zwischenfrequenz von $8,5 \mathrm{MHz}$ aus. Die Gesamtverstärkung selbst wird niedrig gehalten, um die Mischröhre bei hohen Antennenspannungen nicht zu übersteuern. Aus diesem Grund erhält auch das Gitter der Röhre V 21 eine vom Nutzsignal abhängige neg. Regelspannung vom ZF-Verstärker (Röhre V 75).

b) Mischgenerator

Im Kathodenkreis der Oszillator-Triode V 24/1 liegt der Quarz X 21, (Overtone-Quarz). Der Anodenkreis A 26 ist auf die Quarzfrequenz abgestimmt. Der Kondensator C 51 bewirkt die Ruickkopplung vom Anodenkreis auf den Kathodenkreis. Die zweite Triodenhälfte arbeitet als Vervielfacher, d.h. der Kreis A 27 ist auf die vierte Harmonische abgestimmt. Dieser Kreis liefert das Signal fur die erste Ueberlagerung in Röhre V 23.

Der Gitterstrom von V 24/2 wird Uiber den Spannungsteiler R 33/ R 34 mit dem Service-Messgerät an M 3 Osc. kontrolliert.

Der Quarz ist in einem Halter $U 21$ (U 22) untergebracht. Durch den Einbau von weiteren Quarzen X $22 . . .26$ mit den zugehörigen Umschaltrelais "B", "C" und "D", bzw. "A", "B", "C", kann der Oszillator iber drei Steuerleitungen bis auf sechs verschiedene Frequenzen umgeschaltet werden.

Die Schaltzustände der Relais bei mehreren Frequenzen sind im Kapitel 9, Anpassungen und Ausbauvarianten angegeben.

Die Frequenz jedes Quarzes kann mit einem parallel geschalteten Trimmer C 63...C 66 (bzw. C 401...407) leicht korrigiert werden.
5. Zwischenfrequenzteil
5.1 2F-Verstärker 8.5 MHz

Das Bandfilter A 71 übernimmt das $8,5 \mathrm{MHz}$ Zwischenfrequenzsignal vom HF-Chassis und bringt es auf die Röhre V 7l. Diese arbeitet als ZF-Verstärker und ist uber das Bandfilter A 72 auf die Mischstufe V 72 geschaltet. Zwischen Gitter 1 und der Masse liegt der Quarz X 71, rückgekoppelt über den Kathodenstrom C 81/ L 75. Die zweite $Z F$ von $0,455 \mathrm{MHz}$ wird im Anodenkreis abgenommen.

5.2 ZF-Verstärker 0.455 MHz

Die Röhre V 72 arbeitet auf das Bandfilter FH 31 mit dem Durchlassband 455 kHz (2. 2F). Praktisch liegt die Gesamtselektion des Empfängers in diesem l2-kreisigen Bandpass konzentriert.

Das Filter ist fest abgestimmt, vergossen und luftdicht verlötet.

Technische Daten

Mittelfrequenz : $0,455 \mathrm{MHz}$
Bandbreite 6 db Abfall
Sperrdämpfung $\pm 30 \mathrm{kHz}$
Anpassung (Ein- u. Ausgang)
$: \pm 15 \mathrm{kHz}$
: 90 db
: 22 kOhm

Die nachfolgenden Stufen V 73, bis V 75 arbeiten als Verstärker. Sie sind über relativ breite Einzelkreise gekoppelt.

5.3 Begrenzer und AVC-Kreis

Die nachfolgenden zwei Stufen V 76 und V 77 arbeiten als Begrenzer zur Unterdrückung der AM. Um die Intermodulation- und Uebersteuerungsgefahr in den HF-Stufen zu vermindern, erhält die Röhre V 21 oberhalb einer Schwelle von ca. 5-10 $\mu \mathrm{V}$ eine AVCSpannung, wodurch ihre Verstärkung herabgesetzt wird. Diese Regelspannung wird durch Gitter-Gleichrichtung in der Röhre V 75 erzeugt und uber Widerstand R 92 auf die AVC-Leitung Pot. 105 geführt.

Ausser dieser Regelspannung führt die AVC-Leitung eine feste, negative Gittervorspannung für die Röhre V 2l. Diese wird am Gitter der Röhre V 77 über den Spannungsteiler R 104/105 und den Vorwiderstand R 103 abgenommen.

Der Spannungsteiler R 90/91 erlaubt die Kontrolle der Regelspannung mit dem Service-Messgerät (Stellung M 5 AVC).

Die Aussteuerung des ersten Begrenzers wird uber R 98/99 diejenige des zweiten Begrenzers V 77 über R 105/106 mit dem Service-Messgerät an M 6 (Lim. 1) bezw. M 7 (Lim. 2) gemessen.

5.4 Diskriminator

Der Phasendiskriminator A 77 arbeitet auf die Doppeldiode V 78. Die Niederfrequenzspannung gelangt uber eine abgeschirmte Leitung auf den NF-Verstärker und den Squelch-Verstärker. Ueber Vorwiderstand $\mathrm{R} l l 2$ wird die Diskriminatorspannung auf Messleitung Pot. 200 gebracht.

Diese ermöglicht die Kontrolle mit dem Service-Messgerät auf Stellung M 8 (Diskr.).
6. Niederfrequenzteil

Squelch :

Die Squelchschaltung sperrt den NF-Ausgang, sobald die Empfängerrauschspannung eine, in bestimmten Grenzen einstellbare Schwelle uberschreitet. Zu diesem Zweck wird die Rauschspannung am Diskriminatorausgang iuber den Entkopplungswiderstand R 131 und das Filter C 132/ L 131 der Röhre V 131 zugefuhrt. Das Filter ist durchlässig für Rauschfrequenzen im Bereich von ca. 16 kHz . Die verstärkte Rauschspannung wird in der Schaltung G 131, C 134, R 136 gleichgerichtet. Das Glied R 137/ C 136 glättet die gleichgerichtete Spannung und leitet diese als negative Gittervorspannung an das zweite System der Röhre V 131. Ohne Rauschspannung zieht das im Röhrenkreis liegende Squelchrelais Q (P 131) auf. Steigt die Rauschspannung uber den Schwellwert, sperrt die negative Gleichspannung die Röhre V $131 / 2$ und das Relais Q fällt ab. Die Arbeitskontakte $q^{I} q^{I I}$ werden geöffnet.

Der geöffnete Kontakt $q^{I I}$ lässt eine starke negative Gleichspannung uber die Widerstände R 107/ R 141 auf das Gitter der Endröhre V 132 wirken, wodurch diese den NF-Ausgang sperrt. Die negative Gleichspannung von ca. 40 Volt wird am Gitter der Röhre V 77 abgenommen.

Kontakt q^{I} steuert uber die Leitung QA die Besetztlampe B 2 im Bedienungsgerät, so dass diese beim Abfall des Relais Q stromlos wird.

Das erste System V 131/1 erhält uiber Widerstand R 132 und den Spannungsteiler R 97/R 98 vom Gitter des ersten Begrenzers V 76 eine zusätzliche Gitterregelspannung. Dadurch wird bei grösserem HF-Signal die negative Gittervorspannung von V 131/1 erhöht und die Rauschverstärkung vermindert. Dies bewirkt, dass die Squelchsperre bei starkem Empfangssignal nicht durch allfällige Störspannungen anspricht.

Zur Einstellung des Schwellwertes dient Potentiometer R 133 in der Kathode des Systems V 131/1. Der Regelbereich wird durch den Querstrom über R 134 erhöht. Das Potentiometer R 133 verändert den Arbeitspunkt und die Gegenkopplung der Röhre V 131/1.

Bei Simplex-Betrieb soll beim Senden die Endröhre gesperrt werden; zu diesem Zweck wird die Leitung RS uiber das Senderrelais an Masse gelegt. Die nun wirksame Kathodenspannung verhindert ein Aufziehen des Squelchrelais und damit das Oeffnen der Endröhre.

Endstufe :

Die vom Diskriminator abgenommene NF-Spannung liegt uber die De-emphasis-Glieder R 140, R 145, C 138 ohne Zwischenverstärkung direkt am Gitter der Endröhre V 132. Der Ausgangstransformator T 131 ist normal fur eine Belastung von 5 Ohm angepasst. Seine Sekundärseite kann im Bedarfsfalle für einen Belastungswiderstand von 20 Ohm umgeschaltet werden.

Unter Berücksichtigung der Phasenmodulation des Senders (Frequenzhub steigt linear mit f_{M}) ergibt sich mit dem De-empha-sis-Glied für die Uebertragung eịn linearer Frequenzgang zwischen 300 und 3000 Hz .

Messwiderstände für Anodenspannung

Ueber den Spannungsteiler R 143/R 144 wird die Anodenspannung UR dem Messanschluss M 2 zugeführt für Kontrolle mit dem Service-Messgerät.
7. Anschlüsse

Stecker N 1
Die Steuerleitungen sind auf Steckeranschluss N 1 zusammengefasst. Dabei bedeuten :

Anschluss
1

Symbol
M

Funktion
Masse, Ruickleitung von H, DC, UR

2	TR	Tastleitung für Antennenrelais A und Fernsteuerung des Senderrelais
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\left.\begin{array}{l} \mathrm{Ra} \\ \mathrm{Rb} \end{array}\right\}$	NF-Ausgang
5	RS	Steuerleitung für Sperrung der Squelchröhre V 131 und damit der Endrönre V 132 bei Simplexbetrieb
6	FD	
7	FB	Steuerleitungen für Frequenzumschaltrelais B, C, D
8	FC	
9	H	12 Volt \sim Speisung
10	UR	Empfängeranodenspannung 200 V für Zusatzgeräte
11	QA	Squelchrelais, Steuerung der Besetztlampe B 2 im Bedienungsgerät
12	DC	12 Volt = für Relaisspeisung
HF-Stecker N 3 :	Duplex-Betrieb :	Anschluss des Antennenkabels Empfänger-Eingang
	Simplex-Betrieb:	Anschluss des Senderausgangs
HF-Stecker N 4 :	Simplex-Betrieb:	Antennenanschluss
	Duplex-Betrieb :	Der Stecker wird nicht montiert.
Messtecker N 5 :	Zum Anschluss von (schwarzer Stecke	```Service-Messgerät M.D 51``` r)
Anschluss	Symbol	Stromkreis
M 1	DC	Relaisspeisespannung 12 Volt=
M 2	UR	Anodenspannung Empfänger $180 \text { Volt = }$
M 3	Osz.	Gitterstrom Röhre V 24
	BROWN BOVER	RI HK 90355 D/10

M4.	Mix.	nicht benïtzt
M5	AVC	Regelspannung, Gitterstrom V 75
M6 7	Lim. 1	Gitterstrom V 76
M 8	Lim. 2	Gitterstrom V 77
M9	Discr.	Diskriminatorstrom V 78
		Tastleitung für Sende- und Antennenrelais, wird mit Schalter im Service-Mess- gerät an Masse gelegt.

8. Abstimmvorschrift

Messwerttabelle	HK 412096
Schaltschema	HK 090147
Montageschema	HK 090462
Protokoll der Betriebswerte	HK 412048

A. Messgeräte

Fur die Durchfürrung einer kleinen Kontrolle werden folgende Instrumente benötigt :
1 Service-Gerät MD 51

fü Frequenzwechsel und Abstimmkontrolle

1 Messender, Frequenzbereich entsprechend der Uebertragungsfrequenz. Geeichter Ausgangsspannungsteiler mit Anpassung auf 50 Ohm .

fur Modulationskontrolle

I Messender wie oben, jedoch frequenzmodulierbar 1 kHz 20 kHz Hub .

für Kontrolle der ZF-Kreise

1 Messender $8,5 \mathrm{MHz}$-Bereich
1 Wellenmesser zur Kontrolle von $8,5 \mathrm{MHz}$ Signal Genauigkeit 10^{-4}
B. Massnahmen bei Röhrenwechsel

- Es sind keine Kreise nachzustimmen, ausgenommen bei Ersatz der Röhre V 24
- Bei Wechsel der Röhre V 24 Kontrolle des Gitterstromes an M 3 und evtl. Nachstimmen nach Kapitel C
- Kontrolle der Squelcheinstellung
C. Massnahmen bei Frequenzwechsel und fährl. Unterhalt

Die gleiche Abstimmkontrolle soll auch im Rahmen der jährlichen Unterhaltsarbeiten durchgeführt werden. Ist die Anlage mit Nebenfrequenzen ausgerustet, so verwende man zum Abgleich einen Kanal der mittleren Frequenzlage.

Es wird angenommen, dass die Abstimmung von ZF-Kreisen und Diskriminator noch in Ordnung ist. Im Zweifelsfalle vorgehen nach Kapitel D.
a) Abgleich der Mischgeneratorkreise Osz. (V 24)

- Setze den neuen Quarz ein, stecke das Service-Messgerät und kontrolliere auf stellung M 3
- Stimme den Kreis A 26 (1 27) vorerst so ab, dass sich auf M 3 ein gut ablesbarer Strom einstellt.

Ein Verstimmen von A 26 (L 27) soll nun folgende Charakteristik aufweisen :

Ausdrehen des Abstimmkernes :
Kurz nach Erreichen des Maximums scharfes Abreissen der Schwingung.

Eindrehen des Abstimmkernes :
Stetiger Abfall der Anzeige bis auf einen Bruchteil des Maximalwertes.

Reisst die Schwingung beim Ausdrehen des Abstimmkernes nicht ab, so ist die-Parallelkapazität zum Quarz zu gross. Der entsprechende Ziehtrimmer (c 63-66) * ist weiter auszudrehen oder insbesondere beim Abstimmen auf eine höhere Frequenz die Festkapazität C 52 kleiner zu wählen.

Wird eine tiefe Frequenz abgeglichen, so muss unter Umständen sogar Parallelkapazität zugeschaltet werden, damit der Quarz auf der Sollfrequenz schwingt. (Siehe Kapitel E Richtwerte).

- Regle den Kreis A 26 (L 27) auf der stetigen Flanke für ca. 50 o/o des Maximumwertes (Richtwert 10-15 Skt.)
- Stimme anschliessend den Kreis A 27 auf M 6 ab für maximale Empfindlichkeit des Empfängers (siehe Abgleich des HF-HF-Verstärkers.
*) bzw. C 401-407.
b) Abgleich des HF-Verstärkers
- Speise den Empfänger aus Signalgenerator und regle die Frequenz auf Diskriminator-Mitte, Nulldurchgang (Stellung M 8)
- Verkleinere die Eingangsspannung bis der Ausschlag an M 6 20 Skt. zurückgeht.
- Steigt die Anzeige beim Abstimmen über 25 Skt. so verkleinere die Spannung vom Signalgenerator für 20 Skt. Ausschlag.
- Regle die HF-Kreise A 27 (L 25), A 21 (L 21) A 22 (L 22) A 23 (L 23) und A 24 (L 24) für maximale Anzeige auf M 6 .
c) Abgleich der Ueberlagerungsfrequenz
- Speise den Empfänger mit dem HF-Träger des zugehörigen Senders und kontrolliere den Diskriminatorausschlag. Dabei wird vorausgesetzt, dass der Sender auf die richtige Frequenz abgeglichen ist.
- Ziehe den Quarz mit Parallel-Trimmer C 63 bis der Diskriminatorstrom Null wird.
- Wiederhole den Abgleich für allfällige Nebenfrequenzen mit den zugehörigen Trimmern C 64, C 65 und C 66 bzw. C 401-407.
D. Abstimmkontrolle des ZF-Kanales
- Ziehe den Quarz X (21) aus und speise auf das Gitter der Röhre V 23 ein $8,5 \mathrm{MHz}$-Signal ein.
- Kontrolliere das 8,5 MHz-Signal mit dem Wellenmesser auf eine Genauigkeit von mindestens 10^{-4}.
a) $2 \mathrm{~F}-\mathrm{Kreise} 0,455 \mathrm{MHz}$
- Regle das Signal am Generator für 20 Skt. Anzeige auf M 6.
- Stimme die Kreise A 75 (L 78), A 74 (L 77) und A 73 (L 76) für maximalen Ausschlag auf M 6 ab. Steigt die Anzeige uber 25 Skt., so verkleinere die Generatorspannung für 20 Skt. Anzeige.
- Stimme den Kreis A 76 (L 79) für maximalen Ausschlag an M 7 ab .
b) ZF-Kreise 8.5 MHz
- Regle das Signal am Generator für 20 Skt. Anzeige an M 6.
- Stimme die Kreise A 28 (L 29/ L 30), A 71 (L71/L 72) und A 72 (L 73/ L 74) für maximalen Ausschlag auf M 6 ab. Steigt die Anzeige uber 25 Skt., so verkleinere die Generatorspannung für 20 Skt. Ausschlag. Es ist $z u$ beachten, dass je einer der genannten Abstimmkerne pro Kreis von oben und je einer von unten zugänglich ist.

c) Diskriminator

Kontrolliere den Diskriminatorausschlag auf M 8. Ist die Abweichung grösser als ± 2 Skt., so regle den Nullpunkt am Sekundärkreis A 77 (L 8l) (Eisenkern auf Verdrahtungsseite) nach. Musste der Diskriminator nachgestellt werden, so ist der Abgleich unter Kapitel C.c. zu wiederholen. Fehlt ein geeigneter Wellenmesser, so kann der Signalgenerator auf Durchlass-Mitte des ZF-Bandpasses eingeregelt werden. Dazu sind auf dem Signalgenerator ($8,5 \mathrm{MHz}$ oder 455 kHz-Bereich) die Frequenzpunkte für 6 db - Verstärkungsabfall wie folgt zu bestimmen :

- Signalgenerator im flachen Teil des Bandpasses für 20 Skt. an M 6 einregeln.
- Signalspannung verdoppeln.
- Frequenz + und - soweit verstimmen bis die Anzeige an M 6 wieder auf 20 Skt. absinkt.
- Zugehörige Teilstriche auf Frequenzskala des Generators ablesen und dann Signalgenerator auf Mitte der beiden Werte einstellen.

E. Angaben $z u$ "Abgleichwerte"

Die im Schema mit "Abgleichwerte" bezeichneten Positionen sind nach folgenden Gesichtspunkten bestimmt worden :

Kondensator C 52 : In der Regel sind hier 10 pF Festkapazität eingebaut. Für Quarze mit abnormalem Ziehverhalten für die der Variationsbereich des Trimmers nicht ausreicht, kann dieser Wert vergrössert oder verkleinert werden. Eine Verkleinerung der Kapazität wird insbesondere in Geräten mit mehreren Nebenfrequenzen notwendig.

Widerstand R 145 : Mit diesem Widerstand kann der NF-Ausgangspegel geregelt werden. Er wird im Werk bei einer Modulationsfrequenz von $1000 \mathrm{~Hz} 12,5 \mathrm{kHz} \mathrm{Hub}$ auf ca. l, 8 Volt an 5 Ohm eingestellt.
9. Anpassungen und Ausbauvarianten

9.1 Einbau von Nebenfrequenzen	
Schéma Nebenfrequenzen FXE 2-4	HK 405517
Einbau-Zeichnung 2 Frequenzen	HK 305669
Einbau-Zeichnung 3 Frequenzen	HK 305970
Einbau-Zeichnung 4 Frequenzen	HK 305971
Schema Nebenfrequenzen FXE-11 (6 Freq.)	HK 415054

Die Normalausführung besitzt nur den Quarz X 21 in Halter U 21 ohne Relais für die Frequenzumschaltung. Die Relais der Umschalteinheiten FXE 2-4 sind fest eingelötet. Bei Aenderungen der Speisespannung ist die ganze Einheit auszuwechseln.

Einbau einer zweiten Frequenz

Den Quarz X 22 in Halter U 21 einsetzen und wieder in Fassung U 21 stecken. Frequenzumschalt-Einheit FXE 2 (richtige Speisespannung beachten) und Trimmer C 64 einbauen und nach Einbauzeichnung verdrahten.

Einbau von drei bzw. vier Frequenzen

Allfällige bereits vorhandene Einheiten ausbauen. Entsprechende Frequenzumschalteinheit FXE (Betriebsspannung beachten) einbauen und nach Einbauzeichnung anschliessen. Trimmer C 64 bis C 66 einbauen nach Bedarf und verdrahten.

Quarze X 21 und X 22, bzw. X 23 und X 24 je in gemeinsamem Halter auf die Fassung $U 21$ bzw. U 22 stecken.

Einbau einer Sechs-Frequenzeinheit FXE-11

Allfällige bereits vorhandene Quarze, Trimmer, Relais und Fassung U 22 ausbauen. Einsetzen der Sechs-Frequenzeinheit FX-11 nach Anleitung HK 412015, Der Anschluss erfolgt uber Octalsockel N 401, der im Gerät auf Fassung U 21 gesteckt wird (von oben zugänglich).

In dieser Einheit sind die Relais steckbar und können leicht ausgewechselt werden. Anpassung an andere Betriebsspannung ist durch Austausch der Relais ebenfalls möglich.

Abstimmen :

Die Frequenzen aller Quarze sind nach dem Einbau mit dem Paralleltrimmer nachzustellen.

9.2 Speisungsvarianten

Der Empfänger E 16 B l ist auf folgende Speisungsarten umschaltbar :

6 Volt	$=$	Batteriespeisung	Typ E ll	B 11		
12 Volt	$=$	$"$	Typ E	16	B	12
12 Volt	\sim Netzspeisung	Typ E 16	B	13		

Je nach Speisungsart sind folgende Anpassungen vorzunehmen :
für 6 Volt $=$ Vibrator Typ 6 I HD 4
für 12 Volt $=$ Vibrator Typ 12 I HD 4
für 12 Volt \sim wird kein Zerhacker benötigt
Der Vibrator wird auf Fassung U 12 gesteckt, von oben zugänglich.

		F 5.55	
Speisung	$\begin{gathered} 6 \text { Volt }= \\ \text {-oder }+ \text { an Masse } \end{gathered}$	$\begin{gathered} 12 \text { Volt }= \\ \text {-oder }+ \text { an Miasse } \end{gathered}$	Netzspeisung 12 V
Heizkreise			
Die Lötstiften des VA-Chassis sind gemäss Angaben im Schaltschema wie folgt zu verbinden :			
herzustellende Verbindungen :	$\begin{array}{lll} 1 & \text { mit } & 8 \\ 3 & \text { mit } & 4 \\ 3 & \text { mit } & 6 \end{array}$	$\begin{array}{lll} 1 & \text { mit } & 3 \\ 3 & \text { mit } & 6 \end{array}$	$1 \text { mit } 6$
Schaltung des Transformators T 11	$\begin{gathered} \text { Pot. } 232 \text { an } 2 \\ " \quad 234 \text { an } 4 \\ " \quad 236 \text { an } 8 \end{gathered}$	$\begin{aligned} & \text { Pot. } 232 \text { an } 2 \& 3 \\ & " 234 \text { an } 2 \\ & " \quad 236 \text { an } 7 \end{aligned}$	Pot. 232 an 2 und 3 " 234 an 5 " 236 an 8 " 237 an 7
```Relais : Antennenrelais S (P 1) verbinden```	$\begin{aligned} & \text { Wicklungen } \\ & \text { parallel } \\ & \text { schalten } \\ & 1 \quad \text { mit } \\ & 3 \text { mit } 4 \end{aligned}$	Wicklungen in Serie schalten $\begin{gathered} 2 \operatorname{mit} \\ \text { verbinden } \end{gathered}$	

Frequenzumschaltrelais für jede Speiseart sind die passenden Einheiten vorzusehen.

## Beschreibung der Radiotelephon-Zusatzgerąte

## Binleitung

Dicses Kapitel umfasst eine Sammlung von Beschceibungen der einzeInen Zusaizgeräte, cie in der betreffenden Anlage verwendet werden.
Ier Auibau dieser 3eschreibung ist aligemein gehalten und enthallt auch Ausbauvarianten, die vielleicht in der vorliegenden Anlage nicht ausgefuhrt sind.
Allfällige in der Anlage verwendete Spezialausfuhrungen der Zusatzgeratte sind in den Käpiteln $G$ (Gesamtanlage oder Stationstypen) beschrieben.
Diese Zusetzgeräte köncen in ganzen Gmuppen in einem oder nehreren ID-Fasten zusammengefasst sein, oder sie sind als Binzel.o geratie montiert.
Das Zusammenwirken dieser Gerate in einer Station, sowie derea Funktion jnnerhelb der gesamten Anlege ist, soweit fur das Verstanding nötig, in Kopitel $G$ dargelegt.
Diese Kapitel enthalten auch, soweit notwendje, detaillierte Angaber Uber Einstelldaten, Anieitung fir Fehlejeingrenzung und Angeben fur Montage der Eincelgeräte.

Service-Messgerät MD 51

Schema HK 411911

## 1. Allgemeines

Das Service-Messgerät MD 51 dient der Kontrolle des Betriebszustandes der Sender und Empfänger der BBC-Radiotelephone. Das Bakelitgehäuse misst ca. $150 \times 95 \times 50 \mathrm{~mm}$ und ist zusammen mit einem Satz Abstimmwerkzeuge in einer Bereitschaftstasche aus Kunststoff mit Traggrifi untergebracht.
Das Gerät besteht aus einem Drehspulmesswerk, einem Messtellenumschalter und zwei Anschlusskabeln mit.je einem schwarzen und roten Messtecker.
2. Schaltung und Wirkungsweise

Die $\pm 50$ Skalenteile entsprechen $75 \mu \mathrm{~A}$ Instrumentenstrom. Der Schaltex S 1 mit 10 Mess-Stellungen schaltet die entsprechenden Messtromkreise an das Gerät. In den Stellungen MI + M 8 wird gegen Masse gemessen, und in den Stellungen M I und M II gegen ein erdfreies Potential. Der einpolige Klippschalter S 2 ermöglicht die Tastung des Senders. Das 10-adrige, fest eingezogene Messkabel mit dem schwarzen Novalstecker mit langem Mittelstift dient den Anschluss des Gerätes an den jeweiligen Messstecker des zu prüfenden RT-Gerätes. Das Kabel führt die Messleitungen der Stellungen M $1+$ M 8, die Tastleitung und eine Masseleitung. Das 3-adrige Messkabel mit rotem Novalstecker und kurzem Mittelstift führt die Messleitung für die Stellungen I und II mit einer Rückleitung.
3. Technische Daten

Skala	$50-0-50 \mathrm{Skt}$
Innenwiderstand	12000 hm
Instrumentenstrom	$\pm 75 \mu \mathrm{~A}$

Verzeichnis der Abstimmwerkzeuge
1 Pronto~Trimmer-iteckschlüssel, blau HK 411293

1. " Arretierschluissel fü Schwingtöpfe aus Stahl HK 4112.90

1 " Abstimm-Schraubenzieher, rot HK 411294

1 " Schraubenzieher, schwarz
HK 411292
1 " Arretierschliussel fiur Trimmer
Stahl vernickelt, Griff schwarz
HK 411291
1 komb. Abstimm-Schraubenzieher mit SteckSchlussel

HK 304233
1 Justiervorrichtung für Röhrensockelstifte HK 415205
I Röhrenziehvorrichtung, grosser Durchmesser HK 412204 P 2
I Röhrenziehvorrichtung, kleiner Durchmesser HK 415204 P I

## Eichinurven

Im Deckel des Service-Messgerätes sind Eichkurven eingebaut. Mit Milfe dieser Angaben kann die HF-Leistung von Sendern bzw. die Abstimmung von Frequenzweichen bestimmt werden.

Frequenzweiche $F-B 31$

| Typ 04 B 31 | Band $31 \ldots 41 \mathrm{MHz}$ | Schéma | HK 405480 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| F 08 B 31 | $70 \ldots 90 \mathrm{MHz}$ | HK 405479 |  |
| F 16 B 32 | $156 \ldots 174 \mathrm{MHz}$ | HK 405478 |  |

Die Frequenzweichen dieser Typenreihe sind fiur alle drei Frequenzbänder ähnlich aufgebaut. Sie ermöglichen den Duplexbetrieb von Funkgeräten über eine gemeinsame Antennen unter der Voraussetzung, dass der Abstand zwischen Sende- und Empfangsfrequenz mindestens $5 \%$ beträgt.


## Spezielle Merkmale

- Durchstimmbar im ganzen angegebenen Frequenzband.
- Beliebige Frequenzabstände über dem Minimalabstand von $5 \%$ abstimmbar.
- Charakteristik mit ausgeprägtem Durchlassband und Sperrband.
- Anschlusstecker Typ VHF (für Steckertyp Amphenol 83-1).

Technische Daten

	F 04 B 31	F 08 B 31	F 16 B 32
Frequerzbereich	$31-41 \mathrm{MHz}$	$70-90 \mathrm{MHz}$	$156-174 \mathrm{MHz}$
Minimaler Frequenzabstand fs/fe	2 MHz	4 MHz	8 MHz
Durchlassdämpfung			
$\Delta f=\min$	1 db	1 db	1 db
$\Delta f=10 \mathrm{MHz}$	0,3 db	$0,4 \mathrm{db}$	$0,8 \mathrm{db}$
Sperrdämpfung	40 db	40 db	33 db
Sendeleistung zulässig		$\max 50$ Watt	
Anpassung 50 Ohm SWR		$\leq 1,5$	

Inhaltsverzeichnis

1. Schaltung und Wirkungsweise 3
2. Abstimmanleitung 4
2.1 Allgemeines 4
2.2 Messgeräte 4
2.3 Spezielle Hinweise 5
2.4 Abgleich Sperrkreis Empfangskanal 5
2.5 Abgleich Sperrkreis Sendekanal 6
2.6 Abgleich Durchlass Empfangskanal 6
2.7 Abgleich Durchlassfrequenz Sendekanal 6
2.8 Fixieren der Trimmer 6
3. Kontrolle 6

## 1. Schaltung und Wirkungsweise

In dieser Beschreibung wird die Schaltung für die Frequenzweichen aller drei Bänder gemeinsam beschrieben. Abweichungen sind in den jeweiligen Kapitel angegeben.


Typ F 08 B $31 /$ F 16 B 32


Von der Deckelseite gesehen


An Anschluss $N 1$ bezeichnet mit $\approx$ wird der Sender Tx oder Empfänger Rx mit der tieferen Frequenz angeschlossen. Der Parallelschwingkreis L 22/C 22 (L 22/C 221) wirkt für die zu sperrende Frequenz als Resonanzwiderstand von ca. 5 kOhm . Dies ergibt bei einem Antennenwiderstand von 50 Ohm eine Sperrdämpfung ca. 40 db . Für die Durchlassfrequenz ist der Parallelkreis verstimmt, die verbleibende Reaktanz wird mit Trimmer C 21 auf eine relativ niederohmige Serieresonanz abgestimmt (Durchlassdämpfung 1 db ). Für die höhere Durchlassfrequenz an N 3 wirkt der Parallelkreis C l2/L 12 (L l2/C 121) kapazitiv. Um eine Serie-Resonanz zu erreichen ist die Zuschaltung der Induktivität L 1 ll ( L Il) erforderlich. Für die Erleichterung der Abstimmung wird der Induktivität der Trimmer C 11 zugeschaltet. Fur die Typen F 08 B 31 und F 16 B 32 liegt dieser in Serie dazu, während er beim Typ F 04 B 31 parallel angeschaltet ist.


Die störenden Schaltkapazitäten der Bauelemente gegen Masse werden durch die Parallelinduktivitäten L 112 resp. 212 kompensiert, so dass die Anpassung d.h. das SWR in zulässigen Grenzen liegt.
2. Abstimmanleitung

### 2.1 Allgemeines

Im Werk werden die Frequenzweichen mit geeigneten Messeinrichtungen auf 50 Ohm Anpassung fuir ohmsche Belastung abgestimmt. Sender-Ausgang und Empfänger-Eingang sowie die Antennen sind aber im allgemeinen nicht rein ohmisch. Der restliche induktive oder kapazitive Anteil liegt in Serie zu den Schwingkreisen der Weiche und beeinflusst deren Abstimmung im betriebsmässigen Zustand. Die Frequenzweiche erfiillt aber ihre Aufgabe nur vollwertig, wenn die Kreise mit den externen Komponenten zusammen auf Resonanz abgestimmt sind.
Die LC-Weiche ist in elektrischer Hinsicht relativ einfach aufgebaut, die Abstimmung verlangt aber Kenntnis ihrer Funktionsweise und ein gewisses Minimum an Messeinrichtungen. Die vorliegende Anleitung ist ein Kompromiss um mit einfachen Messgeräten die Weiche nachträglich mit der Betriebsanlage zusammen あstimmen zu können.

### 2.2 Messgeräte

1 Kunstanterne MA 51 mit Durchgangsmesskopf MAZ 51 oder ähnlichen Belastungswiderstand mit 50 Ohm und Leistungsanzeige.

1 Richtsoppler (Mikromatch)
Diese Einrichtung erlaubt eine zuverlässigere Abstimung der Weiche, ist aber nicht unbedingt erforderlich.
1 Messkopf MDZ 3l, ermöglicht mit dem Servicemessgerät MD 51 die Kontrolle der Senderrestspannung auf dem Empfangskanal. An dessen Stelle kann auch ein HF-Röhrenvoltmeter mit 50 OhmAnschlusswiderstand verwendet werden.
1 Messender für das Frequenzband der Uebertragung mit geeichtem Spannungsteiler für 50 Ohm Anpassung.

### 2.3 Spezielle Hinweise

- Wenn möglich vorerst mit Kunstantenne abstimmen. Wenn nicht verfügbar, darf die Abstimmung mit normaler Betriebsantenne nur ausgefuhrt werden für SWR der Antonne < 1,3.
- Vor der Abstimmung ist der Sender ohne Frequenzweiche auf die Kunstantenne oder wenn nicht verfuigbar auf die Aussenantenne optimal abzustimmen. (Siehe Anleitung in der Gerätebeschreibung) Nach der Abstimmung ist der Sender-Ausgang mit Frequenzweiche noch einmal durch Nachstimmen der Senderkreise optimal auf max. Leistungsauskoppelung zu überpruifen.
- Zum Abstimmen muss der Abschirmdeckel montiert sein.
- Bei der Anschaltung von Sender bzw. Empfänger sind immer die Kabellängen zu verwenden, die später betriebsmässig eingeschaltet sind. (Kabellängen nach Stationsbeschreibung beachten).
- Zum Abstimmen Trimmer-Feststellschrauben mässig festziehen, so dass sie sich noch einstellen lassen, aber so dass das Festziehen keine Verstimmung ergibt.
- In den nachfolgenden Abstimmangaben können die Trimmerpositionen nicht angegeben werden, da je nach Frequenzlage Sende- und Empfangskanal wechseln können.


### 2.4 Abgleich Sperrkreis Empfangskanal

- Sender an Sendekanal anschliessen und vorerst wenn möglich auf Abstimmen schalten.
- Antennenanschluss über Messkopf mit Kunstantenne belasten:
- Empfangszweig mit Messkopf MDZ 51 belasten und Restspannung mit Servicemessgerät kontrollieren (Vorerst Stlg I wählen)
- Trimmer im Parallelkreis vom Empfangskanal (Seite Antennenstecker zugänglich) auf minimale Anzeige an Messkopf abgleichen. Wenn Anschlag klein genug Sendeleistung normalschalten und ev. Service-Messgerät auf grössere Empfindlichkeit (Stlg II) einschalten.


### 2.5 Abgleich Sperrkreis Sendekanal

-. Mit Messender im Sendezweig die Empfangsfrequenz einspeisen.

- Empfänger fuil Empfangsfrequenz am Empfangszweig anschliessen und Begrenzerstrom mit Service Messgerät uberwachen.
- Antennenanschluss mit Kunstantenne und Messkopf belasten.
- Trimmer im Parallelkreis des Sendekanals (Seite N 2 zugänglich) flur minimales Empfangssignal im Empfänger abgleichen.


### 2.6 Abgleich Durchlass Empfangskanal

Anschluss wie unter 2.4 beschrieben und Seriekreis vom Empfangskanal für maximales Empfangssignal abstimmen. (Zugänglich Seite Stecker Empfangskanal)

### 2.7 Abgleich Durchlassfrequenz Sendekanal

- Schaltung wie unter 2.4 beschrieben
- Serienkreis Sendekanal für max. Anzeige an MAZ 51 abstimmen. (Zugänglich Seite Stecker Sendekanal) Ein genauer Abgleich ergibt sich, wenn ein Richtkoppler (Mikromatch) zwischen Sender und Weiche geschaltet wird und auf kleinstes VSWR abgeglichen wird.


### 2.8 Fixieren der Trimmer

Anschliessend alle Trimmerschrauben sorgfältig festziehen, so dass sie sich dabei nicht verstimmen.

## 3. Kontrolle

Die zulässigen Sendeleistungsverluste sind vom Frequenzabs+and $\Delta f$ abhängig. Sie dürfen nachstehende Werte nicht übersteigen.


- Das gleiche gilt für die Empfangsverluste. Die Messenderspannung für einen bestirmten Begrenzerausschlag z.B. M $6=30$ Skt. darf durch das Einfügen einer Freguenzweiche max. um die obigen $d b$-Werte ansteigen.
Die Sperrdämpfung soll für $40 / 80 \mathrm{MHz}$ ca. 40 db , für 160 MHz ca. 33 db betragen. Die mit dem Messkopf gemessenen Restspannungen $U_{E}$ sollen 40 db resp. 33 dr unter der Sendespannung $U_{S}$ liegen. Dies ergibt nachstehende Spannungswert,e $U_{E}$ :
$40 / 80 \mathrm{MHz} \quad \mathrm{P}_{\mathrm{S}}=45$ Watt $(\mathrm{d}=40 \mathrm{db}) \quad \mathrm{U}_{\mathrm{E}}=0,5 \mathrm{~V}(\operatorname{ar} 50 \mathrm{hm})$
$160 \mathrm{MHz}=30$ Watt $(\mathrm{d}=33 \mathrm{db}) \mathrm{U}_{\mathrm{E}}=0,9 \mathrm{~V}(\mathrm{an} 50 \mathrm{hm})$
Wird die Kunstantenne und der Messkopf durch die Betriebsantenne und den Empfänger ersetzt, so ist die Antennenankopplung am Sender soweit notwendig nachzustimmen. Eine Korrektur der Frequenzweichen-Abstimmung erübrigt sich.


## Beschreibung 'relephonzuseta $9 U$ 31-1 Sl

## IMHALTSVERZEICHNIS

> beite
2. Einleitung ..... 2
2. Technische Daten ..... 3
3. Anschlusse ..... 4
4. Schaltung und Wirkungsweise ..... 4
4.1 Zweddrahtabschiuss und Gabelschaltung ..... 4
4.2 Tongenerator ..... 5
4.3 Auswerter ..... 6
4.4 Relaisschaltung ..... 6
5. Abgleichwerte ..... 7
5.1 Gabelachaltung, Widerstand R 13 ..... 7
5.2 Signalpegel senden ..... 7
5.3 Arbeitspunkt Eöhre V2 ..... 7
5.4 Impulskorrektur ..... 7
5.5 Modulator RIT 5 ..... 7

Radiotelephon Rusatzgerate Telechonzusatz GU 31 - 1 sl

## Beschreibung Telamonzusatz GU 31

## Unterlagen

Schema GU 31-1 sl	HiK 202546
PrinzipschemaVar。GU 31/41-1 sl	HK 090515
Systembeschreibung	G 4.22 sl

## 1. Einlettung

Die Zueatzausrústung GU 31 wird auf der Zentralensejte einer als "Drahtloser Teilnehmeranschluss" geschalteten Funkverbindung zwischen Funkgerat und 2-Draht-Teilnehmerschlaufe der Zentrale geschaltet. Sie onthalt die Gabelschaltung, die Stromkreiso fur die Signalubertragung und die Elemente für den Abschluss der 2-Drahtleitung.
Die Speisung wird aus der Sende-Empfangsstation entnommen. Das Gerät ist auf Chassis Grösse G 66 (318 x 274) zum Einbau in iD-Kasten montiert.
Das Steuerkabel wird direkt auf die Chassisklemen gefuhrt. Der Anschluss der felephonschlaufe erfolgt auf eine Telephondose an der Rückwand des Kastens.


Teilnehmer


Zentrale

Radiotelephon Zusatzgeräte
Telephonzusatz GU 31 - 1 s?

## 2. Technische Daten

Speisespannungen

Heizspannung	II	$12,6 \mathrm{~V}_{\mathrm{Ol}} \pm 10 \%$
Anodenspannung	UR	+200 Volt
Relaisspannung	DC	-12 Volt

Uebergabepegel (Normaleinstellung für 1000 Hz und 6 kHz Hub )

2-Draht	senden	$\mathrm{La} / \mathrm{Lb}$	775 mV
2-Draht	empfangen	$\mathrm{La} / \mathrm{Lb}$	500 mV
4-Draht	senden	$\mathrm{Ma} / \mathrm{Mb}$	300 mV
4-Draht	empfangen	$\mathrm{Ra} / \mathrm{Rb}$	4 Volt

Signalpegel (Normaleinstellung fuir 3700 Hz und $6 \mathrm{kHz} \mathrm{Hub)}$

4-Draht	senden	$\mathrm{Ma} / \mathrm{Mb}$		
4-Draht	empfangen	$\mathrm{Ra} / \mathrm{Rb}$	$\quad$	300 mV
---:				

Rückflussdëmpfung der Gabelschaltung 20 db (Leitung mit 600 Ohm abgeschlossen)

Impulsverzerrungen Auswerter
Impulslänge nach Impulskorrektur $\max . \pm 5$ mick. 60 msek. $\pm 2$ msek.

Tongenerator:
Frequenz . 3700 Hz
Frequenz-Toleranz $\quad-10^{\circ}$ bis $+60^{\circ} \mathrm{Cel} \quad \pm 1,5 \%$
Ausgangspegel regelbar max. $1,5 \mathrm{~V}$

Radiotelephon Zusatzgeräte
Telephonzusatz GU 31-1 sI

RT
B 173 - sl

Auswerter:
Frequenz
Toleranz

$$
-10^{\circ} \text { bis }+600 \mathrm{Cel} \pm 1,5 \%
$$

Isolation:
2-Drahtseite gegen alle ibrigen Stromkreise 2000 Volt
3. Anschlurse

Lötstrips $\mathrm{N} 1 / \mathrm{N} 2:$
1 M Masse

2 TR Tastleitung für Senderelais
3 Ra
4 Rb Empfängerausgang
5 Ma
$6 \mathrm{Mb}\}$ Sendereingang
9 H 12,6 Volt Heizung
10 UR Anodenspannung 200 Volt
11 QA Anschluss Squelchkontakt
12 DC - 12 Volt Relaisspeisung
14 BL Anschlưs fiir Belegungsanzeige
16 Q Messanschluss $q$-Kontakt

## Lötstrips N3:

$\left.\begin{array}{ll}1 & \text { La } \\ 2 & \text { Lb }\end{array}\right\} \quad$ 2-Draht-Anschluss fiur Telephonleitung
4. Schaltung und Wirkungsweise

### 4.1 Zweidrahtabschluss und Gabelscheltung

Der Trenntransformator T3 trennt die PTT-Seite von der Geräteseite。Auf der PTT. Seite liegen die Belegungsdrossel DI, das Anrufrelais $R$ mit Koppelkondensator C5 und Gleichrichter GI, sowie das polaritätsabhängige Relais GZ mit Gleichrichter G 10. Die Geräteseite des Schutzübertragers T3 liegt iber dem
 Diese besteht im wesentichen ans den zwei Uebertragern $T 1$
und $T$ 2, wobei der gemeinsame Strobikreis, bestehend je aus einer Wicklung dieser Transformatoren, die Uebertragung der NF-Spannung vom Empfünger $\mathrm{Ka} / \mathrm{Rb}$ über T 2 - T3 zum Anschluss $\mathrm{La} / \mathrm{Lb}$ und in Gegenrichtung vom Anschluas La/Lb uber T $2-\mathrm{T} 1$ zum Sender Eingang $\mathrm{Ma} / \mathrm{Mb}$ iubernimnt.
Die Gabelschaltung verhindert, dass $\mathrm{Na}-$ Signal vom EmpfangerAusgang auf den Sender-Eingang zumickfliesst. Die Gabeltrafo besitzen zu diesem Zweck je eine weitere Wicklung, die; genau gleich ausgefunrt ist wie die der Zweidrahtseite. Diese Wicklungen werden gegenphasig zusammengeschaltet und arbeiten suf eine Nachbildung. Unter der Voraussetzung einer genalien, der Leitungsimpedanz entsprechenden Nachbildung kompensiert sich dadurch der Energiefluss von Empfangs- auf Seadeseite. Dabei wirken die Widerstände R 7-12 als Nachbildung des Děmpfungsgliedes auf der Zweidrahtseite und die Widerstände R 13-14 mit Kondensator C 3 als Leitungsnachbildung.

### 4.2 Iongenerator

Die eine Fälfte der Doppel-Triode V ( ${ }^{(G C C} 81$ ) ist mit dem Ferroxcube-Kreis A $I$ als Cszillator mit Kathoden-Gitter-Ruck-kopplung geschaltet。 Die SchwingkreismKapazität C 22-24 ist für die Betriebsfrequenz abgestimmt und wird zur Kompensation des positiven Temperatur-Koeffizienten der Perroxcubespule $I I$ der TK des Kondensators entsprechend negativ geweinlt ( $-300.10^{-6} / 0 \mathrm{Cel}$.)
Am Widergtand $R 23$ wird eine Teilspannung abgegriffen und dem Gitter der 2. Triodenhälfte der Röhre V1 zugefuhrt. Auf der Anodenseite wird die verstärte Spannung uber den mransformator TZabgenommen und auf den Seriewiderstand $R 41$ eingekoppelt Im Ruhezustand wird der Oszillator durch die Kathodenspannung von ca. 17 V am Widerstand R 28 gesperrt. Die Testung des Oszillators erfolgt durch Kurzschliessen dieses kiderstandes.

```
Radiotelephon Zusatzgerate
Telephonzusatz GU 31-1 sl
```

```
BEDW%
 N
B 173 - &1
```


### 4.3 Auswerter

Der eigentlichen Auswerteschaltung mit Rơhre V2 als Gleichstromverstärker und TF-Relais im Anodenkreis, ist ein Aroplitudenbegrenzer vorgeachaltet. Dieser besteht im wesentichen aus dem Begrenzertrafo T4. Dessen Sek.-Seite ist mit zwei vorgespannten Dioden G4 und G5 belastet. Uebersteigt die Signalspannung eine bestimmte mit dem Spannungsteiler $R 33$ und $K 34$ ningestellte Schwelle, so werden die Dioden leitend und belasten damit die Spannungsquelle. Ueber Seriewiderstand $\mathbb{R}^{2}$ Jentsteht ein Spannungsabfall, der die Spannung am Uebertrazer alf einen konstanten kert begrenat。 Damit wird erreicht, dass der Auswerterkreis A2 imner mit konstantem Signal ausgesteuert wrd. Damit bleiben die Impulsverzerrungen klein.
Bei Aussteuerung mit Signalirequenz entstent durch die Resonenziuberhöhung am Serieresonanzkreis A2 eine krültige Signalspannung, die mit Diode G3 gleichgerichtet wird und als pos. Steuerspannung auf die Auswerteröhre wirkt. Im fuhezustand ist die Röhre durch eine an R 48 eingestellte neg. Spanning gesperrt.

### 4.4 Relaisgchaltung

Der Furktionse blauf beim Verbindungsaufbau ist in der System beschreibung eingehend beschrieben. Im wesentlichen sind den Relais folgende Funktionen ziageordnet:

TH-Helais: Auswerterelais von Tonempfanger
Q und CI-Relais: Impulskorrekturschaltung
$B$ und BN-Relais: Belegungsrelais
V-Relais: überbruckt die Wahlimpulsserien
R-Relais: Rufempfangsrelais
G-Relais: Empfangtrelais fiir 50 Hz Erdimpulse.
$T$ und TR-Kelais: Hilfsrelais fur Uebertragung von Taximpulseri GZ-Relais: Hilfsrelais fir Klein-Teilnehmex-Kentrale.
audiotelephon Zusatageräte
'̂elephonzuaatz GU 31-1 al

## 5. Abgleichwerte

5.1 Gabelschaltunge Widerstand $R 13$

Im Werk wird dieser Widerstand fir max. Ruckhordämpfung eingestellt, bei einem Leitungsabschluss von 600 Onm. Bs ist zweckmässig nach Installation der Anlage, die. Giastallung wie folgt zu uberprifen:

An $\mathrm{Ra} / \mathrm{Rb}$ wird eine NF-Spannung von 1 Volt, 1000 Hs eingespiesen, An $\mathrm{Ma} / \mathrm{Mb}$ Eickhorspannung assen und an Widerstand $R 13$ fur Spannungsminimun abgleichen.

### 5.2 Signalpegel senden

Mit Widerstand B 23 wird ein Signalpegel von 300 mV an $\mathrm{Ma} / \mathrm{Mb}$ eingestellt.
5.3 Arbeitspounkt Röhre V2

Mit Abgriff on Widerstand R 48 Arbeitspunkt der Röhre so einstellen, dass in Ruhezustand des Auswerters die Spannung am TF-Relais CB. $10 \%$ der Spannung fur Relaiaebfall wird. Die Einstellung ist fir eine mittlere Röhre durchzufihren.

### 5.4 Impulskorrektur Q-Relaia

Widerstand R 2 fur 60 ms Abfallverzogerung des QoRelais einzustellen.

### 5.5 Modulator RT 5

Der Nodulationsregler ist fir 6 kHz Hub bei Audstenerung mit Messton 1000 Hz einzustellen。

Montage und Inbetriebsetzung

1. Allgemeines
A. Fixstation
a) Montageräume

Trockene und staubfreie Räume für das Aufstellen von RT-Anlagen verlängern die Lebensdauer der Geräte und erleichtern den Unterhalt.

Genaue Angaben uiber benötigte Länge von Steuerkabel, Speisekabel und HF-Kabel helfen, Nacharbeiten am Montageort zu vermeiden, indem die Verkabelung im Werk an die Montageverhältnisse angepasst werden kann. Die beiliegenden Mass-Skizzen ermöglichen die Planung der Anordnung. Die Umgebungstemperaturen sollen folgende Werte nicht uiberschreiten :

dauernd	$-20^{\circ} \mathrm{C}++40^{\circ} \mathrm{C}$
kurzzeitig	$-30^{\circ} \mathrm{C}++50^{\circ} \mathrm{C}$
mit besonderer Belüftung	$+50^{\circ} \mathrm{C}$

Für die Beurteilung der zulässigen Betriebstemperaturgrenzen muss man sich klar sein, dass die Lebensdauer von Röhren und Bauelementen mit zunehmender Betriebstemperatur abnimmt.

## b) Stromversorgung

Die Anlagen sind feur Netzspeisung mit Netzfrequenzen $50+60 \mathrm{~Hz}$ dimensioniert. Durch Umlöten der Anschlüsse an den Speisetrafos können die uiblichen Netzspannungen eingestellt werden. Betriebsmässige Abweichungen von $\pm 10$ o/o können von den Geräten unter Garantie der Funktionen verarbeitet werden. In Netzen mit unstabilen Spannungsverhältnissen ist der Einbau einer passenden automatischen Spannungsregulierung zu empfehlen. (Regeltrafo)

Die Speisung ist entsprechend den lokalen Vorschriften abzusichern.

## c) Antennenzuleitungen

Für die Bestimmung des Gerätestandortes sind auch die sich damit ergebenden Längen der Antennenkabel zu berücksichtigen. Besonders für höhere Trägerfrequenzen können sich erhebliche Dämpfungen ergeben.

BBC-Type	ent spricht	40 lHHz	80 sHz	160 MHz	460 uHz
ADZ.AGZ/ADY, AGY	RG $8 \mathrm{U} / 10 \mathrm{U}$	$0,04 \mathrm{db} / \mathrm{m}$	$0,065 \mathrm{db} / \mathrm{m}$	$0,1 \mathrm{db} / \mathrm{m}$	$0,18 \mathrm{db} / \mathrm{m}$
AGX / AGX	RG $17 \mathrm{U} / 18 \mathrm{U}$	$0,015 \mathrm{db} / \mathrm{m}$	$0,024 \mathrm{db} / \mathrm{m}$	$0,037 \mathrm{db} / \mathrm{m}$	$0,077 \mathrm{db} / \mathrm{m}$

d) Blitzschutz

In Anlagen mit exponierten Antennenanlagen, die Blitzschläge erwarten lassen, ist die Blitzerdung sorgfälltig auszuführen und vor Inbetriebsnahme zu kontrollieren.

- Freistehende Antennenmasten sind an ein im Boden verlegtes Blitzerdsystem anzuschliessen.
- Antennenmasten auf Hausdächern sind mit dem bestehenden Blitzschutzsystem zu verbinden, wo ein solches fehlt, muss für die Antenne eine Blitzerdung erstellt werden.
- Die HF-Apparaturen sind mit der Schutzerde zu verbinden. Hat ein Antennenmast ein eigenes Erdsystem, so ist parallel zum HF-Kabel ein Erddraht zu ziehen, der uber die HFGeräte auf die Schutzerde führt.

Im allgemeinen sind die lokalen, behördlichen Vorschriften für die Montage von Antennenanlagen zu beachten.

An sehr exponierten Montageorten (Relaisstationen) ist ein Schutztransformator in der Netzspeisung zu empfehlen.

## B. Mobile Stationen

## a) Anordnungen in Fahrzeugen

Anlagen für mobilen Einsatz werden in der Regel mit einem gummigelagerten Montagerahmen geliefert. Bei der Placierung der Geräte sind folgende Gesichtspunkte zu beachten :

- Der freie Platz ist so zu bemessen, dass die Geräte entsprechend der Nachgiebigkeit der Gummielemente schwingen können.
- Die Geräte sind vor Wasser und Schmutzeinwirkung zu schuitzen.
- Die Kabel sind so zu verlegen, dass sie durch Transportgüter oder andere Einwirkungen nicht beschädigt werden.
- Geräte mit rotierenden Umformern sollen so montiert sein, dass die Umformerachse horizontal liegt. Kurzzeitig abweichende Betriebslagen sind zulässig.
- Es ist zu beachten, dass Geräte und Kablage nicht durch Motor- oder Auspuff-Wärmeeinwirkung uibermässig erhitzt werden.
- Im eingebauten Zustand soll es möglich sein, den Deckel abzunehmen und das Service-Messgerät anzustecken. (Im Sender auch den roten Stecker von oben).

Genaue Angaben uiber benötigte Längen von Steuerkabel, Speisekabel und HF-Kabel helfen, Nacharbeiten am Montageort zu vermeiden, indem die Verkabelung im Werk möglichst an die Einbauverhältnisse angepasst werden können. Die beiliegenden Mass-Skizzen ermöglichen. die Planung der Anordnung.

Die Umgebungstemperaturen sollen folgende Werte nicht uiberschreiten :
dauernd
kurzzeitig
mit besonaerer Beluftung
$-20^{\circ} \mathrm{C}++40^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}++50^{\circ} \mathrm{C}$
$+50^{\circ} \mathrm{C}$

Für die Beurteilung dieser Temperaturgrenzen muss man sich klar sein, dass die Lebensdauer von Röhren und Bauelementen mit zunehmender Betriebstemperatur abnimmt.
b) Stromversorgung

Die Anlagen sind für Batteriespeisung 6 Volt bzw. 12 Volt dimensioniert. (Bei Bestellung Spannung und Polarität gegen Chassis angeben). Fuir RT 5 und RT 6 - Geräte ist noch folgendes zu beachten : Die Stromversorgung in Automobilen ist im allgemeinen etwas knapp dimensioniert. In jedem Fall ist zu untersuchen, ob die bestehende Anlage für die vorgesehene Zusatzlast angepasst werden kann, oder ob besser eine zusätzliche Lichtmaschine mit יnabhängiger Batterie vorzusehen ist.

Inr Auto-Elektro-Fachmann ist sicher gerne bereit, entsprechende Vorschläge zu unterbreiten.
c) Endstöruns

Das Zündsystem, die Lademaschine, der zugehörige Regler, die elektrische Benzinpumpe, der elektrische Scheibenwischer etc. sind durch einen Fachmann zu entstören. Die Massnahmen sind an das Frequenzband der Anlage anzupassen.

Montage und Inbetriebsetzung

## Invetriebsetzung Fixstation

Diese Angaben beziehen sich auf die erste Inbetriebsetzung nach Montage der Anlage. Die eigentliche Bedienungsanleitung für komplizierte Anlagen ist unter Kapitel $G$ zu finden.

Bevor die Anlage unter Spannung gesetzt wird, sind folgende Kontrollen durchzufiahren :

- Kontrolliere, ob der eingestellte Wert am Netzgleichrichter der Netzspannung entspricht.
- Kontroiliere, ob alle Schalter auf Stellung "Aus" stehen.
~ Kontrolliere, ob der "Abstimmschalter S 91" im Sender auf Stellung "abstimmen" (roter Ring) steht.

Dann ist wie folgt vorzugehen :

- Schalte den Netzschalter am Netzgerät ein.

Hat die Anlage kein Bedienungsgerät oder keine Netzfernsteuerung, so ist damit die Anlage unter Spannung.

Der Sender kann erst nach einer Verzögerungszeit von ca. 30 Sek. getastet werden.

Nach einer Anlaufzeit von ca. 10 min . sind folgende Kontrollen durchzufuhren :

## Senderabstimmung :

- Taste den Sendex und kontrolliere Abgleich der Endstufe anhand der Abstimmvorschrift unter Kapitel F "Korrektur auf Betriebslast", vorerst auf Stellung "abstimmen" und wenn in Ordnung auf Stellung "Senden" (roter Punkt.)


## Aufnahme der Betriebswerte

- Führe eine Betriebskontrolle durch wie unter Kapitel S für die betreffenden Geräte angegeben. Trage die Messwerte im Protokoll ein und beurteile sie nach den dortigen Angaben.


## Pegelkontrolle

- Fuihre eine Pegel- und Funktionskontrolle nach Angaben unter Kapitel $S$ oder nach der Stationsbeschreibung durch und trage die Messwerte in die entsprechenden Protokolle ein.


## Empfängerempfindlichkeit

- Kontrolliere die Empfindlichkeit des Empfängers wie unter Kapitel $S$ angegeben und trage die Miesswerte in das entspreohende Protokoll ein.


## Empfangssignal

- Ist die Verbindung mit der Gegenstation vorhanden, so bestimme die HF-Empfangsspannung durch Speisung des Empfängers mit Signalgenerator für gleiche Begrenzer bzw, AVC-Anzeige.
- Bei Verwendung von Richtantennen sind die Angaben in der Anleitung fur Abgleich der Antennenrichtung unter Kapitel A zu berücksichtigen.
- Hiederhole die Messung zu verschiedenen Tageszeiten, um einen Mi.ttelwert zu erhalten und vergleiche diesen Wert mit der errechneten Empfangsspannung. Sind die Abweichungen gross, so kontrolliere vor allem die Antennen-Anlage noch einmal genau nach.


## Allgemeine Finveise für den Unterhalt der HF- und

Zusatzcerate

## Bjnleitung

Das hier vorgeschlagene Unterhaltungsprogramin bezieht sich auf Erfahrungswerte beim Einsatz unter normalen klimatischen Verhëltnissen. Auf Grund von eigenen Erfahrungen kann der Zeitplan den Bedurfnissen der im Einsatz stehenden Anlagen angepasst werden.

1. Betriebskontrolle (alle 2 Wochen)
a) Messcerite: 1 Service Mesagerst MD 51

I Strow-Spannungs-Vielfach-Fessgerät z.B. AVO-Meter
b) Kessprogramn: (Dieser Abschnitt enthalt nur allemeine Angaben, für Details siehe unter Unternaltsarbeiten der betreffenden Gerëte).

War die tation ausser Betrieb, so ist sie ca, 20 Minuten vor Beginn der Messreine einzuschalten.

1. Betriebszustand der Anlage an Hand der Messwerte, die mit dem ふ̈ervice-Fifesserät und dem Vielfach-Messgerät aufzunehmen sind, überprüren.
2. Gemessene Werte in das vorgesehene Protokoll eintragen und die Ablesungen anhand der Anguben im Irotokoll beurteilen.
3. Bei Ueberschreiten der Gefahrengrenze ist nach den Ancaben j.m Kapitel "Fehlereingrenzung" weiter vorzugehen.
4. Funktionskontrolle im Zusammenhang mit allfälicen Zusatzgeräten, indem entsprechend der Betriebsanleitung alle Betriebsfälle kontrolliert werden.
c) Prisuterungen zu Protokoll und Toleranzen

- Wenn mbglich immer mit dem gleichen Messgerat messen, um dessen Toleranzen auszuschalten.
- Abweichende Speisespannungen gegenuiber früheren liessungen becinflussen die Ablesungen. Die angegebenen zulässigen Ab weichungen infolge Alterung beziehen sich auf den Nennwert der Netz- oder Batteriespannung.

Bei der Beurteilung der Alterung ist die Abweichung der Speisespannung $z u$ berícksichtigen. Im Zweifelsfalle sind normale Speisebedingungen abzuwarten oder durch äussere Massnahmen herzustellen.

- Abweichungen, die innerhalb der Gefahrengrenze bleiben sind zulässig, solange die Uebertragungsqualität und Gerätefunktionen noch befriedigen.
- Gefahrengrenzen fur Messpunkte in Röhrenstromkreisen, dessen Grenzwerte mit "Zuwachs" oder "Abfall" bezeichnet sind, beziehen sich auf einen Referenzwert, der beim Einsatz einer neuen Rơhre erreicht wird. Diese Eintragung ist im Protokoll als neuer Referenzwert zu bezeichnen. Bei zufiunftigen Messwerten ist darauf Bezug zu nehmen.
- Erreichen der Gefahrengrenze bedeutet Alterungen oder andere Defekte, die den Betrieb gefährden. Die Ursache ist anhand der Angaben unter Kapitel "Fehlereingrenzung" zu bestimmen und allfallige Fehler zu beheben.
- Verändern sich die Messwerte, weil ein Nachstimmen der beteiligten Kreise notwendig war, so sind die neuen Messwerte im Protokoll zu markieren.

2. Erweiterte Geräte- und Pegelkontrolle
a) HF-Grundgeräte

Die Angaben fuir diese Arbeiten sind unter Kap. S 2 zusammengefasst, Dort sind auch weitere techn. Angaben mit Toleranzwerten aufgefuhrt, die Abgleicharbeiten und das Eingrenzen von Stömugen erieichtern. Ein spez. Kapitel enthält Hinweige uber die Eingrenzung von Störungen.
b) Ruf-und KontroIlsysteme

Diese Angaben sind unter Kap. S 4 zusammengefasst und enthalten Hinweise iber Funktionstoleranzen und Pegel. Ein spez. Kapitel enthält Hinweise uber Eingrenzung von Störungen.
c) Spez, Wartungsvorschriften

Vorschriften für Geräte oder Bauelemente, die eine spezielle Wartung benötigen sind unter Kap. S 3 zusammengefasst.

## Unterhalt Sender S 16 B I

## Inhaltsverzeichnis

Seite

1. Programm ..... 2
2. Betriebskontrolle ..... 2
3. Erweiterte Gerätekontrolle ..... 2
3.1 Sendeleistung ..... 3
3.2 Modulationssteilheit ..... 3
3.3 Begrenzungseinsatz ..... 3
4. Jährliche Revision ..... 4
5. Technische Detailangaben ..... 4
5.1 Pruifdaten und spez. Abgleichvorschriften ..... 4
a) Stromaufnahme ..... 5
b) Leistungsanzeige ..... 5
c) Modulatorkreis A I ..... 5
d) Automatische Pegelregulierung ..... 5
e) Klippung ..... 5
5.2 Pegelschema ..... 6
6. Eingrenzung von Störungen ..... 6
Unterlagen: Schema S 16 B $11 / 12$ HK 090144
S 16 B 13 HK 090145
Protokoll der Betriebs-werteHK 412105
Messwerttabelle und Ein- grenzung von Störungen ..... HK 412093
Montage HK 090458
Verzeichnis der Siche- rungen RT 5 ..... HK 405581
7. Programm

Alle zwei Wochen: Betriebskontrolle zur Ueberzeugung der Röhrenströme. Sie soll Röhrenalterungen aufzeigen bevor ein Geräteausfall erfolgt.

Alle Monate : Erweiterte Gerätekontrolle, enthält die Ueberwachung folgender Daten :

- Sendeleistung
- Modulationssteilheit
- Begrenzereinsatz

Alle Jahre : Reinigen und Revision des Senders
2. Betriebskontrolle (alle 2 Wochen)

Protokoll HK 412105
Die im Protokoll aufgefuhrte Messreihe ist unter Berucksichtigung der allg. Angaben unter Kapitel S 1 aufzunehmen und in das Protokoll einzutragen.

- Messpunkte 1... 8 :

Schwarzer Stecker des Service-Messgerätes in den Sockel N 5 auf der Frontseite des Senders einstecken. Messtellungen 1...8 mit dem Instrumentenumschalter einstellen und Messwerte ablesen.

- Messpunkte I und II :

Roter Stecker des Service-Messgerätes ir den Sockel N 91 unter dem Gehäusedeckel einstecken. Messtellungen I und II mit dem Instrumentenumschalter einstellen und Messwerte ablesen.

Bei Erreichen der Gefahrengrenze ist der Fehler unter Benuitzung der Hinweise unter Abschnitt 6 zu beheben.
3. Erweitterte Gerätekontrolle (alle Monate)

Zusatzlich benötigte Messgeräte :

1. HF-Wattmeter fur 50 Watt ( 50 Ohm Impedanz)
oder
HF-Messkopf MAZ 51 und Kunstantenne MA 51.

1 Frequenzhubmeter für $160 \mathrm{MHz}-$ Band und für 20 kHz Hub .
1 NF-Röhrenvoltmeter ( $\mathrm{R}_{\text {Eing. }}$, 1 MOhm )
1 DC-Röhrenvoltmeter ( $\mathrm{R}_{\text {Eing. }}$ > 10 MOhm )
1 Tongenerator $300-3000 \mathrm{~Hz}$
1 Kathodenstrahl-Oszillograph

### 3.1 Sendeleistung

Die HF-Anzeige im Gerät (M) ist eigentlich nur als Abstimmindicator gedacht und kann sich über längere Perioden verändern; er ist ausserdem von der Belastung abhängig. Aus diesem Grunde ist es zweckmässig die Anzeige mit einer Referenz-Messeinrichtung $z u$ vergleichen. Der Sender ist $z u$ diesem Zweck von der Betriebsantenne zu trennen und auf die Messeinrichtung zu schalten.

Nennwert; Batteriebetrieb 12/6 V 20 Watt
Netzbetrieb int. 25 Watt
Dauerbetrieb 20 Watt
Bei Abfall auf $50 \%$ des Nennwertes ( 3 db ) ist die Ursache einzugrenzen und zu beheben.

### 3.2 Modulationssteilheit

Das Modulations-Potentiometer ist auf max. Stellung zu bringen und der Sender mit einem Modulationssignal von 1 kHz an Ma Mb auszusteuern. Frequenzhub des Senders auf der Endfrequenz mit dem Hubmeter kontrollieren. NF-Signalspannung fur Frequenzhub von 10 kHz einregulieren. Richtwert $35 . . .65 \mathrm{mV}$.
Bei Ueberschreiten der Toleranzen ist die Ursache einzugrenzen und $z u$ beheben.
Fehlt ein Hubmeter so ist der Empfänger der Gegenstation zu eichen und als Messempfänger zu verwenden.

### 3.3 Begrenzungseinsatz

Das Modulationssignal auf 300 mV erhöhen unter gleichzeitiger Kontrolle des Frequenzhubes. Dabei soll ab 200 mV der Hub nur noch sehr wenig ansteigen und innerhalb

$$
12 . . .15 \mathrm{kHz} \text { Hub liegen. }
$$

Bei Abweichungen ist der Fehler einzugrenzen und zu beheben. Anschliessend an diese Messung ist das Modulationspotentiometer entsprechend den Betriebspegeln einzustellen. Wenn die Vorschrift für Einpegelung (Kap. G od. S 3) keine spez. Angaben gibt so gilt, dass betriebsmässiges Besprechen der Anlage den Sendermodulator soweit aussteuert, dass bei Sprachspitzen die automatische Pegelregulierung knapp anspricht. Dies zeigt sich durch kurzzeitigen Ruckgang an der Anzeige M 2 des Senders um ca. 10 o/o des Ruhestromes.

## 4. Jährliche Revision

- Gerät ausser Betrieb nehmen, Deckel, Seitenbleche und Bodenblech entfernen. Gerät sorgfaltig mit Pinsel und Staubsauger ev. auch trockener und ölfreier Pressluft reinigen.
- Gerät auf allfäflige Defekte wie lockere Schrauben, beschädigte Bauelemente kontrollieren.
- Relaiskontakte, allfällige Thermokontakte reinigen und auf Nachlauf bzw. Verzögerungszeit kontrollieren.
- Abstimmen der Kreise nach Abstimmvorschrift der entsprechenden Beschreibung unter Kap. F nachpruffen und eine neue Messreihe nach Protokoll der Betriebswerte aufnehmen.


## 5. Technische Detailangaben

### 5.1 Prüfdaten und spez. Abgleichvorschriften

Als Ergänzung zu den Angaben in der Beschreibung sind hier weitere technische Daten angegeben. Sie sollen die Beurteilung der Geräte bei speziellem Einsatz ermöglichen und vor allem die Eingrenzung von Störungen erleichtern und bei grösseren Reparaturen eine bessere Kontrolle ermöglichen.

## a) Stromaufnahme

Heizung	$12,6 \mathrm{~V}$	$2,1 \ldots 2,7 \mathrm{Amp}$.
	$6,3 \mathrm{~V}$	$4,2 \ldots 5,4 \mathrm{Amp}$.
Anodenstrom max.		250 mA

## b) Leistungsanzeige

Auf Messtellung M 7 wird der Antennenstrom angezeigt. Diese Schaltung ist frequenzabhängig und muss u.U. bei Frequenzwechsel neu abgeglichen oder geeicht werden. Der Abgleich erfolgt mit Verändern des Widerstandes R 81 oder durch Verändern der Ankopplungsdistanz der Messdiode.

Richtwerte für 25 Watt Leistung 26... 34 Skt.
c) Modulatorkreis A 1

Für diese Messung Regelspannung (Pot. 197) gegen Masse kurzschliessen und Klipperspeisung (Pot. 209) an den Dioden trennen. Sender aus Tongenerator mit 1000 Hz auf Ma Mb aussteuern. Mit Hubmeter Senderhub überwachen, Modulationsspannung für 15 kHz Hub einstellen und Ausgangsspannung am Hubmeter oszillographieren. Kreis A 1 vorerst für max. an M 2 abstimmen. Anschliessend Kreis schrittweise eindrehen unter gleichzeitiger Beobachtung der Kurvenform und Nachregelung des Hubes. Nach ca. l... 2 Umdrehungen soll sich die beste Kurvenform einstellen (Klirrfaktor < $4 \%$ ).
d) Automatische Pegelregulierung

Die Anschaltung der Klipperdioden bleibt abgetrennt. Der Kurzschluss der Regelleitung ist zu entfernen. Sender mit 300 mV , 1 kHz -Signal an Ma Mb modulieren.
Mit Widerstand R 105 die Regel-Charakteristik so einstellen, dass der Frequenzhub zwischen

$$
13,0 \ldots 14,5 \mathrm{kHz} \text { liegt. }
$$

e) Klippung

Die Regelspannung kurzschliessen (Pot. 197) und die Klipperdioden wieder anschliessen. Ausgangsspannung vom Hubmeter im Oszillograph kontrollieren und durch Regelung der Modulationsspannung Einsatzpunkt der Klippung (Abflachung der Kuppen der Sinusform) feststellen. Der zugehörige Frequenzhub soll $16 \ldots 19 \mathrm{kHz}$ betragen. Dieser Wert kann durch Abgriff an Widerstand R 4 eingestellt werden. Richtwert für Spannung zwischen Pot. 108 und 209 20... 40 Volt.

### 5.2 Pegelschema

Zur Erleichterung der Eingrenzung von Störungen sind in den Schema folgende Pegelangaben eingetragen.

- Gleichspannungen:

Sie beziehen sich auf den Sender im Betrieb ohne Modulation. Sie sind mit DC-Röhrenvoltmeter zu messen.

- NF-Signalpegel (Eintragung in Oval)

Es werden NF-Spannungen angegeben fur eine Aussteuerung des Senders mit $f_{\text {mod }}: I \mathrm{kHz}$

Hub : 10 kHz
(unter Einsatz von aut. Pegelregulierung bzw. Klippung)

## 6. Eingrenzung von Störungen

Die Messwerttabelle erleichtert das Eingrenzen von Störungen, die im Zusammenhang mit der Betriebskontrolle der Geräte auftreten. Bei Erreichen der Gefahrengrenze sind die dort aufgefuhrten Punkte zu uberprüfen und allenfalls richtig zu stellen. Beim Auftreten von Betriebsstörungen empfiehlt es sich vorerst die Geräte anhand der Betriebsprotokolle zu uiberprüfen und allfällige Unregelmässigkeiten zu beheben. Werden bei der erweiterten Gerätekontrolle die Toleranzgrenzen überschritten, so können die Tabellen "Eíngrenzen von Gerätestörungen" im Anhang der Messwerttabelle zur Eingrenzung benützt werden. Für eingehendere Untersuchung geben die Pegelangaben in Schema und die technischen Detailangaben weitere Informationen.

## Unterhalt Empfänger RT 5 E 16 B 1

## Inhaltsverzeichnis

1. Messprogramm ..... 2
2. Betriebskontrolle ..... 2
3. Erweiterte Gerätekontrolle ..... 3
3.1 Empfänger-Empfindlichkeit ..... 3
3.2 Squelcheinstellung ..... 3
3.3 Ausgangspegel ..... 3
4. Jährliche Revision ..... 4
5. Technische Detailangaben ..... 4
5.1 Prüfdaten und spez. Abgleichvorschrift ..... 4
5.2 Pegelschema ..... 7
6. Eingrenzung von Störungen ..... 7

## Unterlagen :

Schema E 16 B 1l/12 HK 090148
Schema E 16 B 13
HK 090147
Protokoll der Betriebswerte
HK 412048
Messwerttabelle und Fehlereingrenzung
HK 412096
Montage E 16 B I
HK 090462
Verzeichnis der Sicherungen RT 5
HK 405581

## 1. Messprogramm

Alle zwei Wochen : Betriebskontrolle zur Ueberwachung der Röhrenströme. Sie soll Röhrenalterungen aufzeigen bevor ein Geräteausfall erfolgt.

Alle 3 Monate

Alle Jahre : Reinigung und Revision des Empfängers.
2. Betriebskontrolle (alle 2 Wochen)

Protokoll HK 412048, mit erweiterter Röhrenkontrolle HK 412134. Die im Protokoll aufgefiurte Messreihe ist unter Beriucksichtigung der allg. Angaben unter Kapitel S 1 aufzunehmen und in das Protokoll einzutragen.

- Messpunkte 1... 8 :

Schwarzer Stecker des Service-Messgerätes in den Sockel N 5 auf der Frontseite des Empfängers einstecken. Messtellungen l... 8 mit dem Instrumentenumschalter anschalten und Messwerte ablesen.

In Geräten die mit der erweiterten Röhrenkontrolle ergänzt sind, ist auf Messtellung 1 der Messtellen-Umschalter im Empfänger angeschaltet. In diesem Schaltzustand sind die Röhrenkontrollwerte aufzunehmen. Die gemessenen Werte sind mit den Referenzwerten $z u$ vergleichen und allfällige Abweichungen auf Grund der Angaben im Protokoll zu beurteilen. Bei Erreichen der Gefahrengrenze ist der Fehler unter Benutzung der Hinweise unter Abschnitt 7 zu beheben.

## Zusätzlich benötigte Messgeräte :

1 Signalgenerator für Frequenzband 160 MHz mit geeichtem Spannungsteiler für $50 \mathrm{Ohm}, \quad 0,2 \ldots 10^{4} \mu \mathrm{~V}$ FM-modulierbar mit $f_{\text {mod }} \quad l \mathrm{kHz}$
$\Delta f \quad 12,5 \mathrm{kHz}$
1 Röhrenvoltmeter für NF-Spannungen mit Ri < 1 MOhm

### 3.1 Empfänger-Empfindlichkeit

- Der Empfänger ist von der Antenne zu trennen und aus dem Messender auf Mittelfrequenz zu speisen.
- Squelchpotentiometer ist auf Stellung 0 zu bringen (Squelch ausser Funktion)
- Der NF-Ausgang (Ra Rb) soll mit 5 Ohm bezw. 20 Ohm abgeschlossen sein (je nach gewählter Schaltung im Gerät), und ist mit dem NF-Röhrenvoltmeter zu messen.
- Das HF-Signal ist von 0 aus zu erhöhen bis die Rauschspannung auf 10 o/o des Wertes ohne Signal abgesunken ist. Max. notwendige Spannung : $1 \mu \mathrm{~V}$.


### 3.2 Squelcheinstellung

Das Squelch-Potentiometer ist bei offenem Empfängereingang langsam von 0 aus aufzudrehen bis das Squelchrelais anspricht. Dann ist das Potentiometer um ca. 1 Teilstrich weiter zu drehen, sodass der Squelch bei fehlendem Signal sicher anspricht. Richtwert für Einstellung : 4...5 Teilstriche. Kontrolle der Signalstärke für welche der Squelch anspricht. Sie soll gleich oder kleiner dem Wert sein, der unter 3.1 gemessen wurde. Nach Anschluss der Antenne und ausgeschaltetem Gegensender ist die Einstellung in gleicher Weise noch einmal zu uberprufen und ev. zu korrigieren, da eine Beeinflussung durch Aussenstörungen möglich ist.

### 3.3 Ausgangspegel

Empfänger auf Mittelfrequenz mit Signalgenerator (ca. l mV) aussteuern, wobei der Generator mit 1 kHz und $12,5 \mathrm{kHz} \mathrm{Hub}$ moduliert ist.

Ausgangsspannung an angeschlossenem Empfänger mit Röhrenvoltmeter messen.

Fichtwert (5 Ohm) 1,7...2,7 Volt
(20 0 hm ) $3,4 \ldots 4,2 \mathrm{Volt}$
Fehlt ein Messender so gibt die Rauschspannung am Empfängerausgang bei blockiertem Squelch und offenem Empfänger-Eingang Aufschluss uber den Ausgangspegel
Richtwert (5 Ohm)
$0,7 . . .1,1 \mathrm{Volt}$
(20 Ohm) $\quad 1,4 \ldots .2,2$ Volt
4. Jährliche Revision

- Gerät ausser Betrieb nehmen, Deckel, Seitenbleche und Bodenblech entfernen. Gerät sorgfältig mit Pinsel und Staubsaveer ev. auch trockener und ölfreier Pressluft reinigen.
- Gerät auf allfällige Defekte wie lockere Schrauben kontrollieren.
- Relaiskontakte reinigen und auf Nachlauf kontrollieren.
- Abstimmung der Kreise nach Abstimmvorschrift der entsprechenden Beschreibung unter Kap. F nachprufen und eine neue Messreihe nach Protokoll der Betriebswerte aufnehmen.


## 5. Technische Detailangaben

5.1 Prüfdaten und spez. Abgleichvorschrift

Als Ergänzung zu den Angaben in der Beschreibung sind hier technische Daten angegeben. Sie sollen vor allem die Eingrenzung von Störungen erleichtern und bei grösseren Reparaturen eine bessere Kontrolle ermöglichen.
a) Stromaufnahme

12,6 Volt Wechselstrom-Speisung	
Standby	$2,6 \ldots 3 \mathrm{Amp}$.
Empfang	$2,9 \ldots 3,3 \mathrm{Amp}$.
l2 Volt Gleichstromspeisung	
Empfang	$2,9 \ldots 3,6 \mathrm{Amp}$.
6 Volt Gleichstromspeisung   Empfang	
$l$	

## b) Squelch

Die Empfindlichkeit und der Frequenzabgleich der Squelchschaltung kann wie folgt uberpruft werden :

- Röhre V 78 ausziehen
- Squelchregler R 133 auf Stellung 9 regeln
- Aus Tongenerator ca. 2 Volt Signal auf NF-Leitung Pot. 201 (Röhre V 78 Stift 5) einspeisen.
- Gleichgerichtete Signalspannung an Diode G 131 Pot. 212 gegen Masse mit DC-Röhrenvoltmeter messen (Ri >l0 MOhm)
- Mit Tongenerator Resonanzfrequenz d.h. max. Anzeige an Röhrenvoltmeter bestimmen.
- NF-Spannung so gross wählen, dass Squelchrelais abfällt
- Durch Verkleinern des Signalpegels die Spannung bestimmen für welche das Squelchrelais aufzieht

Richtwerte :	Resonanzfrequenz	$13 \ldots 18 \mathrm{kHz}$
	DC-Spannung	ca. 2 Volt
	Signalspannung	$2,2 \ldots 4,7 \mathrm{Volt}$

## c) Diskriminator

Im Werk wird der Diskriminator abgestimmt um die weiter unten aufgefuhrten Daten zu erfullen. Neben der Abstimmung der Kreise erfolgt auch Einstellung der Kopplung der beiden Spulen durch gegenseitiges Verschieben. Die Spulen werden anschliessend verleimt. Verstimmen durch Ersatz von defekten Bauelementen oder Lösen der Kittstelle bedingen Neuabstimmen folgender Anleitung :

- Aus Signalgenerator genau 0,6 Volt, 455 kHz -Signal auf Gitter der Röhre V 77 einspeisen. (Mittelfrequenz des Bandpasses).
- Bei losen Spulen Kopplungsdistanz zwischen L 80 und L 81 auf ca. $0,3 \mathrm{~mm}$ einstellen und Haube wieder montieren
- Mit Sym. DC-Röhrenvoltmeter Diskriminator-Ausgangsspannung an Pot. 200 (M 8) messen (Ri<lO MOhm)
- L 80 für max. Anzeige an DC-RV abgleichen. Ist der Anschlag zu klein, so kann $L 81$ etwas verstimmt werden
- Kreis L 81 für Diskriminatorspannung Nulldurchgang abgleichen
- Hubsteilheit und Symmetriekontrolle durch Frequenzverschiebung von $\pm 10 \mathrm{kHz}$ kontrollieren

- Bei zu grossen Abweichungen wie folgt korrigieren :

Spannung zu gross oder zu klein :
Korrektur der Kopplung und
Nachstimmen wie oben

Unsymmetrie zu gross :
Korrektur an Abstimmung vom Primärkreis L 80

- Fehlt ein geeignetes symmetrisches DC-RV so kann diese Abstimmung auch mit beschränkter Genauigkeit mit dem Service-Messgerät ausgefuhrt werden
- Anschliessend Diskriminator-Mittelfrequenz nach Abstimmvorschrift unter Kap. F kontrollieren
d) 2 F -Bandpass 455 kHz

Dieser Bandpass besteht aus einem mehrkreisigen Filter, dessen Elemente in ein luftdichtes Metallgehäuse eingebaut sind. Nachstimmen oder Reparatur ist nicht möglich. Besteht Zweifel uber die Güte dieses Filters so kann dieses wie folgt kontrolliert werden :

- Aus Signalgenerator ca. 0,1 Volt 455 kHz Signal auf Gitter 1 der Röhre V 72 einspeisen
- Signalpegel an Filtereingang und Filterausgang vergleichen und Filterdampfung bestimmen.

Richtwerte für Filterdämpfung :
Mittelfrequenz $\quad 7 . . .10 \mathrm{db}$
Frequenzverschiebung für zusätzliche Dämpfungen
von 3 db
6 db
60 db
$\pm 10 \ldots 14 \mathrm{kHz}$
$\pm 13 \ldots 17 \mathrm{kHz}$
$\pm 22 \ldots 30 \mathrm{kHz}$

Grössere Dämpfungen können in dieser Messanordnung nicht mehr zu verlässig bestimmt werden.

### 5.2 Pegelschema

Zur Erleichterung der Eingrenzung von Störungen sind in den Schematas folgende Pegelangaben eingetragen :

- Gleichspannungen :

Sie beziehen sich auf den Empfänger ohne Empfangssignal. Ausnahmen sind mit einem Stern bezeichnet.
Sie sind mit DC-Röhrenvoltmeter zu messen (Ri<lO MOhm)

- HF-Signalpegel : (Eintragung in Ring)

Es werden zugehörige Signalfrequenzen und Signalspannungen angegeben die an den betreffenden Punkten einzuspeisen sind um eine Begrenzeranzeige an M 6 von mindestens 20 Skt. zu bewirken. An Mischstufen sind die Misch-Signale mit "MF" bezeichnet und sollen mit einem HF-Röhrenvoltmeter gemessen werden.

- NF-Signalpegel : (Eintragung in Oval)

Es werden NF-Spannungen für einen ausgesteuerten Empfänger angegeben wobei :

$$
\begin{array}{ll}
\mathrm{f}_{\text {mod }} & 1 \mathrm{kHz} \\
\text { Hub } & 12,5 \mathrm{kHz}
\end{array}
$$

6. Eingrenzung von Störungen

Die Messwerttabelle erlaubt das einfache Eingrenzen von Störungen, die im Zusammenhang mit der Betriebskontrolle der Geräte auftreten. Bei Erreichen der Gefahrengrenze sind die dort aufgefuhrten Punkte zu überprufen und allenfalls richtig zu stellen. Beim Auftreten von Betriebsstörungen empfiehlt es sich vorerst die Geräte an Hand einer Betriebskontrolle zu überprufen und allfällige Unregelmässigkeiten zu beheben.
Werden bei der erweiterten Gerätekontrolle die Toleranzgrenzen uberschritten, so kann der Fehler mit Hilfe der Tabelle "Eingrenzen von Gerätestörungen" lokalisiert werden. Für eingehende Untersuchungen geben die Pegelangaben im Schema und die technischen Detailangaben weitere Informationen.

